C₃ and C₄ Photosynthesis

James R Ehleringer and Thure E Cerling

Volume 2, The Earth system: biological and ecological dimensions of global environmental change, pp 186–190

Edited by

Professor Harold A Mooney and Dr Josep G Canadell

in

Encyclopedia of Global Environmental Change (ISBN 0-471-97796-9)

Editor-in-Chief

Ted Munn

© John Wiley & Sons, Ltd, Chichester, 2002

C₃ and C₄ Photosynthesis

James R Ehleringer and Thure E Cerling University of Utah, Salt Lake City, UT, USA

Atmospheric carbon dioxide is reduced to organic forms through photosynthesis. Among terrestrial and aquatic autotrophs, there are three photosynthetic pathways. Here we discuss the ecological and evolutionary aspects of C_3 and C_4 photosynthesis, the two most widely distributed pathways.

Three photosynthetic pathways exist among terrestrial plants: C₃, C₄, and crassulacean acid metabolism (CAM) photosynthesis. C₃ photosynthesis is the ancestral pathway for carbon fixation and occurs in all taxonomic plant groups. The term C₃ photosynthesis is based on the observation that the first product of photosynthesis is a 3-carbon molecule. In C₄ photosynthesis, the initial photosynthetic product is a 4-carbon molecule. C₄ photosynthesis occurs in the more advanced plant taxa and is especially common among monocots, such as grasses and sedges, but not very common among dicots (most trees and shrubs). CAM photosynthesis, in honor of the plant family in which this pathway was first documented, occurs in many epiphytes and succulents from very arid regions. However, CAM photosynthesis is sufficiently limited in distribution that CAM plants are not an appreciable component of the global carbon cycle. This section focuses on the factors influencing the dynamics of C3 and C4 dominated ecosystems.

 C_3 and C_4 photosynthesis are relevant to global change studies. These two photosynthetic pathways respond quite differently to changes in atmospheric carbon dioxide (CO₂) concentration and to changes in temperature. From a global change perspective, the kind of photosynthetic pathway present influences the magnitude of carbon fixation by the ecosystem, the quality of the plant food resource available to animals, and the isotopic composition of CO₂ released to the atmosphere.

 C_3 photosynthesis is a multi-step process in which the carbon from CO_2 is fixed into stable organic products; it occurs in virtually all leaf mesophyll cells (Figure 1). In the first step, ribulose bisphosphate (RuBP) carboxylaseoxygenase (Rubisco) combines RuBP (a 5C molecule) with CO_2 to form two molecules of phosphoglycerate (3C molecule). However, Rubisco is an enzyme capable of catalyzing two distinct reactions: one leading to the formation of two molecules of phosphoglycerate when CO_2 is the substrate and the other resulting in one molecule each of phosphoglycerate and phosphoglycolate (2C molecule) when oxygen (O_2) is the substrate. The latter oxygenase reaction results in less net carbon fixation and eventually leads to the production of CO_2 in a process known as *photorespiration*.

The proportion of the time that Rubisco catalyzes CO_2 versus O_2 is dependent on the $[CO_2]/[O_2]$ ratio; the reaction is also temperature dependent, with oxygenase activity increasing with temperature. This dependence of Rubisco on the $[CO_2]/[O_2]$ ratio establishes a firm link between current atmospheric conditions and photosynthetic activity. As a consequence of Rubisco sensitivity to O_2 , the efficiency of the C_3 pathway decreases as atmospheric CO_2 decreases.

C₄ photosynthesis represents a biochemical and morphological modification of C₃ photosynthesis to reduce Rubisco oxygenase activity and thereby increase photosynthetic rate in low CO₂ environments such as we have today (Figure 3). In C_4 plants, the C_3 cycle of the photosynthetic pathway is restricted to interior cells within the leaf (usually the bundle sheath cells). Surrounding the bundle sheath cells are mesophyll cells in which a much more active enzyme, phosphoenolpyruvate (PEP) carboxylase, fixes CO₂ (but as HCO₃) into oxaloacetate, a C₄ acid. The C₄ acid diffuses to the bundle sheath cell, where it is decarboxylated and refixed in the normal C₃ pathway. As a result of the higher activity of PEP carboxylase, CO₂ is effectively concentrated in the regions where Rubisco is located and this results in a high CO₂/O₂ ratio and limited photorespiratory activity. The additional cost of C₄ photosynthesis is the adenosine triphosphate (ATP) requirement associated with the regeneration of PEP from pyruvate.

C₄ photosynthesis is advantageous under low atmospheric CO₂ and/or high temperatures. The advantages of C₄ photosynthesis occur in lower CO₂ environments and/or high temperature environments, where photorespiration rates are relatively high in C₃ plants. Under these conditions, the efficiency of C₄ photosynthesis is greater than that of C₃ photosynthesis. However, under elevated CO_2 environments or at cool temperatures, the efficiency of photosynthesis is greater in C₃ photosynthesis because photorespiration is reduced and the additional ATP cost of C₄ photosynthesis makes it less efficient. We present these trade-offs graphically in Figure 2. From these lightuse efficiency model predictions, it is clear that C₄ plants are not expected in environments where atmospheric CO₂ is greater than ≈ 600 parts per million (ppm). As atmospheric CO₂ decreases, C₄ plants should become most common first in the warmest environments, than in progressively cooler environments as CO_2 levels then continue to decrease.

The recent history of Earth has been one of decreasing atmospheric CO_2 levels. The atmospheric CO_2 levels are thought to have been higher in the Cretaceous than today (Figure 3). Some time following the Cretaceous (perhaps during the late Miocene), CO_2 levels decreased to about

Figure 1 Leaf anatomy and basic photosynthetic biochemistry of C_3 and C_4 photosynthesis

Figure 2 Modeled crossover temperatures of the photosynthetic light-use efficiency (quantum yield) for C_3 and C_4 plants as a function of atmospheric CO_2 concentrations. The crossover-temperature is defined as the temperature (for a particular atmospheric CO_2 concentration, in parts per million by volume, ppmV) at which the photosynthetic light-use efficiencies are equivalent for both the C_3 and the C_4 plant. (Figure is modified from Ehleringer *et al.*, 1997)

500 ppm. During recent glacial-interglacial cycles, atmospheric CO_2 has fluctuated between 180 and 280 ppm. Since the dawn of the Industrial Revolution, atmospheric CO_2 levels have risen and these increases have been most dramatic since the 1950s (Figure 3). C_4 photosynthesis occurs primarily within monocotyledonous plants. The flowering plants are classified as monocotyledons or dicotyledons. Approximately 6000 of the 15000 monocotyledonous plants (primarily grasses and sedges) possess C_4 photosynthesis. In contrast, only about 1600 of the 300000 dicotyledonous plants possess C_4 photosynthesis. In terms of taxonomic diversity, C_4 photosynthesis occurs in 401 monocotyledonous genera and 86 dicotyledonous genera.

 C_4 grasslands emerged globally as an important ecosystem 6–8 Ma ago. Carbon isotope ratios are distinct and different between C_3 and C_4 plants (Figure 4). Variations in the carbon isotope ratios within a pathway reflect changes in environmental conditions and genetic differences among plants within a pathway type. The diet of animals (tissues in extant animals and tooth enamel in fossils) is reflected in their carbon isotopic composition. The offset of 14‰ between carbonate in tooth enamel and the C_3/C_4 food diet as shown in Figure 4 reflects a fractionation associated with apatite (calcium phosphate carbonate) formation in the tooth. Since animal fossils, such as teeth, are much more common in semi-arid and arid ecosystems, we can use the carbon isotopes in tooth enamel to reconstruct the presence of C_4 -dominated ecosystems through time.

Between 8 and 6 Ma there was a global expansion of C_4 ecosystems (Figure 5). There is no conclusive evidence for the presence of C_4 biomass in the diets of mammals before 8 Ma, although the presence of small amounts of C_4 biomass is not excluded because of the uncertainty in the $\delta^{13}C$ end member for C_3 plants. By 6 Ma there is abundant evidence for significant C_4 biomass in Asia, Africa, North

Figure 3 Patterns of atmospheric CO_2 concentrations through time. (a) Reconstruction of paleo CO_2 levels between 200 million years (Ma) ago and present; (adapted from Cerling *et al.*, 1998). (b) Reconstruction of atmospheric CO_2 from ice cores for the past 160 000 years; (adapted from Barnola *et al.*, 1991) (before present, b.p.). (c) Atmospheric CO_2 concentrations recorded at Mauna Loa, Hawaii since 1958; (adapted from Keeling and Whorf, 2000)

Figure 4 Histograms of the carbon isotope ratios of modern grasses and modern tooth enamel; (adapted from Cerling *et al.*, 1997)

America, and South America, but not in Europe. Figure 5 documents several different ecosystem-type changes as recorded in mammalian tooth enamel. While each of these

regions appears to have been dominated by C_3 ecosystems earlier in the Miocene, the C_3 Pakistani ecosystem was almost completely replaced by a C_4 ecosystem; African, North American, and South American ecosystems retained both C_3 and C_4 components. European and northern portions of North American ecosystems did not show any change in the fraction of C_3 biomass, remaining at virtually 100% C_3 ecosystems. The mixture of both C_3 and C_4 components within a grazing ecosystem can be achieved in one of two ways: a temporal separation with C_3 grasses active in winter–spring and C_4 grasses active in summer or by a monsoonal system with C_4 grasses and C_3 woody vegetation.

The isotopic evidence in tooth enamel indicates clearly that the expansion of C₄ ecosystems was a global phenomenon, persisting until today. The C₃/C₄ changes were accompanied by significant faunal changes in many parts of the world. It is unlikely that the global expansion of C₄ biomass in the late Miocene was due solely to higher temperatures or to the development of arid regions. There have always been regions of Earth with hot, dry climates. To explain the simultaneous global expansion of C₄ plants requires a global process. The light-use efficiency model (Figure 2) suggests that changes in atmospheric CO_2 are a strong possibility for this global mechanism. The supporting evidence indicates that the global expansion of C₄ ecosystems appears to have originated in warmer, equatorial regions and then spread to cooler regions, consistent with the temperature sensitivity predictions of the quantum yield model. Cerling et al. (1997) documented that within both modern and fossil horses (equids), the distributions of isotope ratios strongly support a decrease in abundance of C₄ photosynthesis in moving from warm equatorial to cooler temperate latitudes.

Figure 5 Histograms comparing the carbon isotope ratio values for fossil tooth enamel older than 8 Ma (lower charts) with those that are younger than 6 Ma for six regions of Earth; (adapted from Cerling *et al.*, 1998)

 C_4 grasslands are thought to have a wider distribution during glacial periods than they do today. The model in Figure 2 predicts greater global proportions of C_4 biomass during Pleistocene glacial, than interglacial periods. The published literature of organic $\delta^{13}C$ values in peat bogs and lakes from Central and Eastern Africa in regions (areas currently dominated by rain forest ecosystems) strongly suggest extensive C_4 expansion during the last full glacial period. Within western portions of North American, soil carbonate data also indicate that C_4 ecosystems were more extensive during the last glacial period than they are today. The model in Figure 2 suggests that mechanistically C_4 grasses were much more common during the glacial period when C_3 vegetation would have been CO_2 starved. Following deglaciation, the decline in C_4 abundances appears to be correlated with increases in atmospheric CO_2 levels.

What of the future? It is anticipated that atmospheric CO_2 levels will be double the current values by the end of this century. Until mankind's thirst for fossil fuels is

quenched, it is likely that atmospheric CO_2 will continue to rise beyond levels experienced in the recent history of this planet. The quantum yield model predicts that as CO₂ levels rise, the atmosphere concentrations will once again cross the CO₂-threshold where C₄ plants do not have a competitive advantage over C3 plants from the standpoint of reduced photorespiration and enhanced light-use efficiency. Will C₄ plants disappear in the future? That answer is unclear, but it appears that they will not have a competitive advantage. Certainly humans will continue to plant C₄ crops since many of today's most prominent crops are C₄ plants (e.g., corn and sorghum). Regardless of whether or not C₄ plants are as common among subtropical and tropical ecosystems, changes in atmospheric CO₂ will have continued impacts on the distributions of C₄ taxa.

REFERENCES

- Barnola, J-M, Pimienta, P, Raynaud, D, and Korotkevich, Y S (1991) CO_2 Climate Relationship as Deduced from the Vostok Ice Core: a Re-examination based on New Measurements and on a Re-evaluation of the Air Dating, *Tellus*, **43**(B), 83–90.
- Cerling, T E, Ehleringer, J R, and Harris, J M (1998) Carbon Dioxide Starvation, the Development of C₄

Ecosystems, and Mammalian Evolution, *Proc. R. Soc. London*, **353**, 159–171.

- Cerling, T E, Harris, J M, MacFadden, B J, Leakey, M G, Quade, J, Eisemann, V, and Ehleringer, J R (1997) Global Vegetation Change Through the Miocene–Pliocene Boundary, *Nature*, **389**, 153–158.
- Ehleringer, J R, Cerling, T E, and Helliker, B R (1997) C₄ Photosynthesis, Atmospheric CO₂, and Climate, *Oecologia*, **112**, 285–299.
- Keeling, C D and Whorf, T P (2000) Atmospheric CO₂ Concentrations – Mauna Loa Observatory, Hawaii, 1958–1999, (revised August 2000), http://cdiac.esd.ornl.gov/ndps/nd-p001. html.
- Petit, J R, Jouzel, J, Raynaud, D, Barkov, N I, Barnola, J M, Basile, I, Benders, M, Chappellaz, J, Davis, M, Delaygue, G, Delmotte, M, Kotlyakov, V M, Legrand, M, Lipenkov, V Y, Lorius, C, Pepin, L, Ritz, C, Saltzman, E, and Stievenard, M (1999) Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica, *Nature*, **399**, 429–436.

FURTHER READING

Jouzel, J, Loriu, C, Petit, J R, Genthon, C, Barkov, N I, Kotlyakov, V M, and Petrov, V M (1987) Vostok Ice Core: a Continuous Isotope Temperature Record Over the Last Climatic Cycle (160 000 years), *Nature*, **329**, 403–408.