
Fossil records reveal dramatic shifts in
woody species’ distributions during the late
Pleistocene through the recent Holocene in
the American Southwest (Van Devender and
Spaulding 1979, Spaulding and Graumlich
1986, Betancourt et al. 1990, Miller and
Wigand 1994). One such migration involves
the southward retreat of Quercus turbinella
Greene, an evergreen diffuse-porous oak, from
northern Utah. This species hybridizes with
Quercus gambelii Nutt., a deciduous ring-
porous oak, in contact zones in southwestern
Utah and northwestern Arizona (Cottam et al.
1959). Relict hybrid clones occur in northern
Utah along the western front of the Wasatch
Mountain Range almost 400 km north of the
current contact zone (Fig. 1). Cottam et al.
(1959) argued that hypsithermal warming was

responsible for the northward migration of
both species through the Arizona-Utah region,
and more recent cooling has resulted in extir-
pation of the evergreen Q. turbinella from
northern Utah, leaving behind the more cold-
tolerant hybrid individuals. Neilson and Wull-
stein (1983, 1985), however, found that suc-
cessful seedling establishment in both Q. tur-
binella and Q. gambelii depends on summer
moisture and argued that the northern range
limits for both species are controlled synergis-
tically by 2 distinct air mass boundaries: the
polar front that controls the probability of late
spring frost, and the summer “monsoon” that
controls summer moisture availability. Biogeo-
graphic implications of seedling stress toler-
ance and demography, however, do not reveal
why hybrid individuals have persisted and
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ABSTRACT.—The evergreen oak Quercus turbinella and the deciduous Q. gambelii form natural hybrids in southwest-
ern Utah and northern Arizona. Hybrid individuals also are found in northern Utah in a region where only Q. gambelii
currently exists, indicating that Q. turbinella has recently retreated southward. Our objectives were to (1) examine the
ecophysiology of parental taxa and hybrids under natural conditions in southeastern Utah, and (2) investigate the level of
integration between leaf carbon isotope discrimination (a synthetic gas exchange trait) and structural and chemical traits
of leaves in morphologically variable hybrid populations. Leaf length, width, mass-to-area ratio (LMA, g m–2), and nitro-
gen concentration (N, g g–1) within 2 hybrid populations near New Harmony, Utah, were highly intercorrelated. Varia-
tion within the hybrid populations spanned mean values for these traits observed in parental taxa from adjacent “pure”
populations of each species. Carbon isotope discrimination (∆), an integrated measure of the ratio of intercellular to
ambient CO2 concentration, ranged from 16.1‰ to 19.6‰ within the 2 hybrid populations and was positively corre-
lated with leaf nitrogen concentration and negatively correlated with LMA; individuals in hybrid populations with
leaves resembling Q. gambelii had the highest leaf ∆ and N concentrations and lowest LMA compared with leaves from
plants that resembled Q. turbinella. CO2 uptake is limited by stomatal conductance and possibly by mesophyll resis-
tance to a greater extent in Q. turbinella phenotypes than in intermediate or Q. gambelii phenotypes. δD of stem xylem
water (an indication of active rooting depth) and predawn water potential during the peak monsoon period in August
were not correlated to leaf ∆ values within the hybrid populations. Several individuals that were morphologically similar
to Q. turbinella in the hybrid populations maintained high predawn water potentials and derived moisture from winter
recharge that presumably was taken from deep soil layers. Apparently, a few adult individuals of the Q. turbinella pheno-
type in hybrid populations accessed water from deep in the soil profile, which enabled them to avoid summer drought.
Reduced monsoonal activity may have been an important, but not the single, determinant of Q. turbinella’s retreat from
northern Utah during the recent Holocene.
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adult Q. turbinella individuals have disap-
peared from northern Utah in spite of the fact
that clones of these oaks have long life spans.

The present northern limit of Q. turbinella
is geographically more closely related to the
sharp summer moisture gradient in the South-
west than is that of Q. gambelii. Ecophysiolog-
ical studies conducted in natural populations
and in common gardens reveal that adult indi-
viduals of Q. gambelii do not take up summer
precipitation but instead use winter moisture
stored in deep soil layers during the growing
season (Phillips and Ehleringer 1994).
Ehleringer and Phillips (1996) demonstrated
that adult Q. turbinella in a common garden
near Salt Lake City, far north of Q. turbinella’s
present northern boundary, took up water
from shallow soil layers following summer
rains. The tradeoff associated with having
roots deployed in shallow soil layers is that

plants experience very low and potentially
damaging soil water potentials during the
summer months in the absence of significant
monsoon storms. Hybrid individuals between
these 2 oaks appear to have an intermediate
rooting depth that allows them to persist in
the summer-dry region of northern Utah, where
the intensity of the summer monsoon has
apparently declined over the recent Holocene.
Greater drought tolerance and higher water-
use efficiency are commonly found among
species or populations that extract water only
from shallow soil layers compared to taxa that
have access to a stable water source deep in
the soil profile (Knapp and Fahenstock 1990,
Flanagan et al. 1992, Williams and Ehleringer
1996). Ehleringer and Phillips (1996) and
Ehleringer and Smedly (1988) showed that
stomatal conductance is lower and carbon iso-
tope discrimination (∆) is higher in the
drought-tolerant Q. turbinella compared to that
in the moisture-requiring Q. gambelii. In C3
plants, ∆ depends upon ci/ca, the ratio of inter-
nal to ambient CO2 concentration (Evans et
al. 1986, Farquhar et al. 1989) and thus records
the tradeoff between biochemical demand for
CO2 by photosynthetic enzymes in the chloro-
plasts and CO2 supply through the stomata.
Flanagan et al. (1992) found that leaf ∆ and
depth of water extraction from the soil
(inferred from δD values of xylem water) were
positively correlated among 4 woody species
of the pinyon-juniper ecosystem in southern
Utah. Since ∆ is often correlated with stomatal
conductance and water-use efficiency, it is an
important parameter for unraveling the poten-
tial effects of hybridization on the water bal-
ance of woody perennials such as oak.

Hybrid oak populations in southern Utah
also are useful for examining leaf structural
and physiological controls on photosynthesis.
The dependence of carbon isotope discrimina-
tion (∆) on leaf structural and chemical traits is
typically studied at the interspecific and inter-
population level (Vitousek et al. 1990, Meinzer
et al. 1992, Sparks and Ehleringer 1997). Gen-
erally, ∆ has been shown to decrease with leaf
mass-to-area ratio and leaf nitrogen content.
The Q. gambelii × Q. turbinella hybrid zones
are intriguing because these species represent
extreme leaf morphological types; small, thick
leaves of Q. turbinella grade into large, thin-
leafed Q. gambelii types in these extremely
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Fig. 1. Map of current northern boundaries of Quercus
gambelii and Q. turbinella in the Intermountain region
and location of relict hybrid clones in north central Utah.
Map is based on information in Cottam et al. (1959) and
Little (1971). 



variable hybrid populations. Integration be-
tween leaf structural and chemical traits and
carbon isotope discrimination should be
retained in these hybrid populations if ci/ca is
strongly controlled by these characters. 

This study evaluated plant water relations,
leaf ∆, and leaf structural and chemical traits
in Q. gambelii, Q. turbinella, and their natural
hybrids in southwestern Utah. We predicted
that these 2 oaks would show differential
capacities to take up summer rains in this nat-
ural setting and that hybrids would have inter-
mediate water use and leaf gas exchange char-
acteristics, similar to patterns observed in F1
hybrids in common gardens in Salt Lake City
(Ehleringer and Phillips 1996). Of interest also
was whether leaf structural and chemical traits
that are often linked to ∆ also would be corre-
lated to ∆ in hybrid populations, where there
is a high potential for loss of trait integration
because of recombination and back crossing.

MATERIALS AND METHODS

The study was conducted in southeastern
Utah in Washington County near the town of
New Harmony within a large area of hybrid-
ization between Quercus gambelii and Q. tur-
binella (Fig. 1). Hybridization between these 2
oak species contributes to substantial leaf mor-
phological variation in this area (Cottam et al.
1959, Tucker et al. 1961). Two hybrid popula-
tions were selected for study. Hybrid popula-
tion 1 (HP1; 37°30′N, 113°19′W, 1707 m),
located on a broad alluvial terrace above an
ephemeral drainage (Pace Draw), is approxi-
mately 5 km north of the town of New Har-
mony. Hybrid population 2 (HP2; 37°30′N,
113°19′W, 1713 m) is 2 km northwest of HP1
near the same drainage. Vegetation at both
sites is open scrub-oak woodland.

Twelve plants were selected from within
each of these 2 hybrid populations for detailed
morphological and physiological measurements.
All plants used in the study were multi-
stemmed adult plants and were 2–4 m in
height. Plants were selected haphazardly with
the intent of including the full range of leaf
morphological variation that distinguishes the
2 oak species. Between 8 and 10 leaves were
collected for morphological analysis on 24
August 1994 from each selected plant in the 2
hybrid populations and also from 5 plants
from 1 nonhybrid population of each Quercus

species. The “pure” stand of Q. gambelii
(37°31′N, 113°20′W, 1798 m) was 3 km north-
west of HP2 at the mouth of a mesic canyon
feeding the drainage that passes near HP1 and
HP2. The nonhybrid population of Q. tur-
binella was approximately 18 km south of New
Harmony (37°20′N, 113°18′W, 1340 m).

Blade length, width, 1-sided area, and dry
mass were determined for each leaf collected
from the populations and averaged for each
plant. Leaf mass-to-area ratio (LMA, g m–2)
was calculated from average mass and 1-sided
area values from the leaves collected from
each plant. These same leaves were analyzed
for stable isotope ratios of carbon (δ13C) and
total nitrogen concentration (N, g g–1). δ13C
was determined on finely ground, oven-dried
(70°C for 48 h) blade tissue using an isotope
ratio mass spectrometer (Delta S, Finnigan
MAT, San Jose, CA) attached on-line to a
CHN combustion furnace at the University of
Utah Stable Isotope Facility for Environmen-
tal Research (SIRFER). δ13C was converted 
to carbon isotope discrimination values (∆)
using an atmospheric δ13C value of –8‰
(Ehleringer and Osmond 1989, Farquhar et al.
1989). Nitrogen concentration was measured
on these same samples using a Perkin-Elmer
2400 CHN analyzer (Norwalk, CN).

Predawn leaf water potential (Ψpd) was de-
termined for the same plants sampled above
from all populations on 25 August 1994 using
a Scholander-type pressure chamber (PMS In-
struments, Corvallis, OR). Ψpd was measured
between 0300 and 0530 h local time within 1
to 2 min after twigs were cut from the plants
to minimize changes in Ψ due to water loss.

Plant water sources (winter recharge or
summer monsoon-derived soil moisture) were
inferred from δD values of plant xylem water.
Although we did not measure isotopic values
of soil, precipitation, or groundwater, it has
been shown repeatedly for this region that
winter moisture stored in deep soil layers is
depleted in deuterium compared to water from
surface soil layers that has been subjected to
evaporative enrichment and mixed with iso-
topically heavy summer precipitation (Ehler-
inger et al. 1991, Flanagan et al. 1992, Phillips
and Ehleringer 1994). Our interest here was
simply to evaluate the covariation of δD with
other physiological measurements rather than
to identify the exact depth of water extraction
by these trees or the proportion of water
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obtained from different sources. We cut 3–4
suberized twigs at midday from different loca-
tions on a tree canopy the same day that Ψpd
measurements were taken. Cut twigs were
immediately enclosed and sealed in screw-cap
glass vials using Parafilm and kept frozen in
the lab until water was extracted using a cryo-
genic vacuum distillation technique (Ehler-
inger and Osmond 1989). Samples were then
prepared for hydrogen isotope analysis by
reacting 3 µL of the extracted water with 100
mg of zinc at 500°C for 1 h in sealed Pyrex
tubes (method modified from Coleman et al.
1982). Zinc was obtained from J.M. Hayes, De-
partments of Chemistry and Geology, Indiana
University. Hydrogen gas was analyzed for δD
in the same manner as for δ13C at SIRFER.
Standard lab waters were calibrated against
samples of the international standards GISP
and V-SMOW and were used in linear correc-
tions of raw values obtained from the mass
spectrometer.

Correlation, linear regression, and t tests
were used to evaluate leaf morphological vari-
ation within and between oak populations and
the associations between plant ecophysiologi-
cal characteristics, leaf morphology, and chem-
istry. All analyses were performed using the
JMP statistical software for Macintosh (Ver-
sion 3.1, SAS Institute Inc. 1995).

RESULTS

Data for leaf structural and chemical traits
were pooled between the 2 hybrid populations
to examine broad trends for these characteris-
tics. Blade length, width, LMA, and N con-
centration within the 2 hybrid populations
were highly intercorrelated (Table 1). As
expected, blade length, width, and area were
all positively correlated. LMA was negatively
correlated to length, width, and area, indicat-

ing that larger leaves were also thinner and
likely contained less mesophyll tissue per unit
leaf surface area. Conversely, leaf N concen-
tration was positively correlated to leaf size.
Because LMA declined with leaf size and N
concentration increased in these hybrid popu-
lations, leaf N content (mmol N m–2) was con-
stant over the range of leaf sizes (Table 1).

Leaf structural and chemical traits for
plants in hybrid populations (HP1 and HP2)
had values that spanned the range found in
leaves from the 2 nonhybrid populations
(Table 2). Leaves differed significantly between
nonhybrid populations of Q. gambelii and Q.
turbinella for all morphological traits and for
leaf N concentration (Table 2). Larger leaves
of Q. gambelii had lower LMA, higher N, but
did not differ from leaves of Q. turbinella for
leaf N content. Plants in the 2 hybrid popula-
tions, because of the high degree of trait varia-
tion, did not differ significantly from each
other for any leaf morphological or chemical
trait (Table 2).

Dependence of carbon isotope discrimina-
tion (∆) on leaf structural and chemical traits
and plant water relations traits in the 2 hybrid
populations were evaluated by regression
(Figs. 2, 3). Variation in ∆ was related signifi-
cantly to leaf N concentration and LMA, but
not to leaf nitrogen content (Fig. 2). ∆ ranged
almost 4‰ within these hybrid populations,
with plants resembling Q. turbinella (high
LMA and low leaf N concentration) having the
lowest ∆ values (near 16‰), and plants with
leaves resembling those of Q. gambelii (low
LMA and high N concentration) having the
highest ∆ values of up to 20‰. 

Several rain events that preceded our sam-
pling provided necessary conditions to evalu-
ate water source variation within hybrid popu-
lations. Ψpd and δD were highly variable
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TABLE 1. Pearson correlation coefficients for leaf morpho-physiological traits within a Quercus gambelii × Q. turbinella
hybrid zone. Data for the correlations were from average per leaf values from each plant and are pooled from 2 hybrid
populations near New Harmony, Utah. Correlation coefficients in italics are significant (P < 0.05) after sequential Bon-
ferroni corrections for multiple comparisons (Rice 1989).

Leaf Leaf Leaf N
length width area LMA (%)

Leaf width 0.98
Leaf area 0.97 0.97
LMA –0.83 –0.81 –0.80
N (%) 0.81 0.83 0.75 –0.77
N (mmol m–2) –0.29 –0.23 –0.32 0.52 0.11



within hybrid populations; Ψpd ranged from
–1.5 to –0.2 MPa and δD ranged from –90‰
to –58‰. Groundwater and integrated sum-
mer precipitation collected from a site in Zion
National Park, approximately 50 km to the east
of our hybrid population site and at a similar
elevation, were 95‰ and 30‰, respectively.
Surprisingly, the regression of leaf ∆ on plant
δD or Ψpd was not significant when hybrid
populations were analyzed separately or to-
gether (Fig. 3). Although these water relations
traits were not correlated with ∆, Ψpd was
strongly correlated with δD (Fig. 4). Ψpd de-
clined as δD increased across the 2 hybrid
populations.

Although leaf N concentration differed sig-
nificantly between the 2 nonhybrid popula-
tions (Table 2), ∆ did not (Table 3). Leaf carbon
isotope discrimination, furthermore, was sub-
stantially higher in the pure Q. turbinella pop-
ulation than would be predicted from relation-
ships found in hybrid populations (Fig. 2). ∆
was high in the nonhybrid population of Q.
turbinella even though Ψpd was low. δD val-
ues for individuals within the nonhybrid Q.
turbinella population were higher than for Q.
gambelii, but these were not significantly dif-
ferent (Table 3). 

DISCUSSION

Reduced monsoonal activity over the recent
Holocene may have contributed to the extinc-

tion of Quercus turbinella from northern Utah,
but other climatic factors cannot be eliminated
as possible causes. Although the present study
was limited in scope, we found few differences
among intermediate and parental phenotypes
of Q. gambelii and Q. turbinella for summer
precipitation use in hybrid populations in
southwestern Utah. A few individuals that
morphologically resembled Q. turbinella within
the hybrid populations had δD values that
were identical to that of winter precipitation,
and these same individuals had high predawn
water potentials. Presumably, these Q. tur-
binella phenotypes avoid drought through the
summer because of their access to water stored
in deep soil layers. However, more detailed
isotopic and root profile studies would be
needed to verify this hypothesis. If our water
relations measurements represent general pat-
terns for the entire growing season, then at
least some Quercus turbinella phenotypes have
the potential to persist and maintain high
physiological activity despite limited access to
summer rainfall. Hybrid populations that
occurred in northern Utah some time in the
past presumably had comparable levels and
patterns of variation for these water relations
traits. Consequently, loss of monsoonal storms
from the region would not have resulted in
complete extirpation of Q. turbinella or mor-
phologically similar individuals of hybrid ori-
gin. Although our conclusions are based on
only a single sampling event during 1 yr, both
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TABLE 2. Mean (± sx–), range (min, max), and significance levels (t tests) of leaf structural and chemical traits for nonhy-
brid and hybrid populations of Quercus turbinella and Q. gambelii near New Harmony, Utah, in August 1994. Parame-
ters and hybrid populations are as in Figure 2.

Nonhybrid populations Hybrid populations__________________________________ ___________________________________
Leaf trait Q. turbinella Q. gambelii t test HP1 HP2 t test

Length (mm) 26.9 (1.6) 80.8 (3.1) *** 57.0 (8.1) 47.6 (6.2) n.s.
(23.1, 31.9) (70.3, 83.5) (27.2, 103.5) (25.0, 88.7)

Width (mm) 19.3 (0.7) 53.2 (1.6) *** 36.7 (5.8) 33.2 (4.5) n.s.
(17.7, 22.0) (48.4, 58.6) (16.2, 66.1) (15.4, 58.8)

Area (cm2) 24.9 (8.2) 138.2 (24.4) *** 65.5 (18.9) 56.4 (17.0) n.s.
(15.1, 36.1) (108.8, 173.4) (22.3, 215.1) (20.8, 172.3)

LMA (g m–2) 199 (4) 115 (2) *** 143 (9) 160 (7) n.s.
(188, 210) (110, 123) (100, 185) (111, 206)

N (%) 1.2 (0.1) 2.0 (0.1) *** 1.8 (0.1) 1.7 (0.1) n.s.
(1.0, 1.3) (1.8, 2.1) (1.4, 2.3) (1.2, 1.9)

N (mmol m–2) 173 (9) 161 (7) n.s. 174 (7) 189 (7) n.s.
(140, 189) (143, 175) (123, 207) (145, 226)

***P < 0.001



hybrid populations in our study yielded simi-
lar results.

Based on biogeographic analysis and seed-
ling stress studies, Neilson and Wullstein (1983,
1985) concluded that the northern limit of Q.
gambelii in Utah is constrained by the summer
monsoon gradient and the probability of late
spring frost determined by the polar front gra-

dient. In addition to monsoon dynamics, the
influence of freeze-thaw cycles may be excep-
tionally important in controlling the present
northern limit of adult Q. turbinella. Hydraulic
dysfunction caused by frost-induced xylem
cavitation can be catastrophic for a diffuse-
porous evergreen species (Sperry and Sullivan
1992, Sperry et al. 1994, Pockman and Sperry
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Fig. 2. Dependence of leaf carbon isotope discrimination (∆) on leaf mass per unit area (LMA, g m–2), nitrogen con-
centration (%, g g–1), and nitrogen content (mmol N m–2) for plants selected within hybrid populations (HP1 and HP2)
near the town of New Harmony in southwestern Utah. Regressions were fit to the pooled data for the 2 populations.



1997). Apparently, the ring-porous Quercus
gambelii will tolerate >90% loss of hydraulic
conducting efficiency during winter and rely
on new xylem production prior to leaf-out in
spring to sustain high rates of transpiration
(Sperry et al. 1994). Hybrid oak clones found
in northern Utah are deciduous and poten-
tially cope with freeze-thaw cycles in a man-
ner similar to that in Q. gambelii. Neither the
refilling of cavitated vessels with positive root

pressure nor the ability to avoid freeze-thaw
cavitation by having very small conducting
elements seems like a plausible mechanism
allowing the diffuse-porous and evergreen Q.
turbinella to sustain significant hydraulic con-
ducting efficiency in the cold climate presently
characterizing northern Utah (Sperry et al.
1994). This diffuse-porous species likely expe-
riences significant and nonreversible xylem
dysfunction on an annual basis.

Carbon isotope discrimination in this study
provides indirect evidence that hydraulic effi-
ciency is reduced in Q. turbinella phenotypes
in hybrid populations growing naturally near
New Harmony in southwestern Utah and in
an experimental garden at Salt Lake City stud-
ied by Ehleringer and Phillips (1996). Varia-
tion in ∆ can be attributed directly to changes
in stomatal conductance affecting ci/ca. Adjust-
ments in stomatal conductance, furthermore,
accompany changes in hydraulic conducting
efficiency following hydraulic dysfunction in
Quercus (Cochard et al. 1996). Low carbon
isotope discrimination values measured in the
common garden by Ehleringer and Phillips
(1996) in northern Utah and at the northern
limits of Q. turbinella’s range in the hybrid
populations studied here may therefore reflect
stomatal responses to reduced xylem conduct-
ing efficiency caused by frost. Notably, ∆ in
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Fig. 3. Dependence of leaf carbon isotope discrimina-
tion (∆) on plant predawn water potential (Ψpd, MPa) and
xylem water isotopic composition (δD, ‰) for plants
selected within hybrid populations (HP1 and HP2) near
the town of New Harmony in southwestern Utah. Regres-
sions were fit to the pooled data for the 2 populations.

Fig. 4. Dependence of plant predawn water potential
(Ψpd) on δD of xylem water for plants selected within
hybrid populations (HP1 and HP2) near the town of New
Harmony in southwestern Utah. Regressions were fit to
the pooled data for the 2 populations.



the nonhybrid population of Q. turbinella at 
lower elevation and on a drier microsite south
of New Harmony (18.0‰) was not different
from that of Q. gambelii found in a common
garden in northern Utah (18.8‰) or that of Q.
gambelii in pure stands near New Harmony
(18.0‰). ∆ in Q. turbinella phenotypes was
much reduced in the hybrid populations and
in the common garden in Salt Lake City. It is
likely that frost, in addition to reduced mon-
soonal activity, played a role in the loss of
adult Q. turbinella from northern Utah, but
the combination of these climatic effects on
this migration requires further study.

Leaf nitrogen concentration was almost
twice as high for Q. gambelii as it was for Q.
turbinella in pure and hybrid populations.
Bulk leaf N concentration often reflects con-
centrations of photosynthetic enzymes, pig-
ments, and electron transport components in
leaves and is positively correlated with maxi-
mum photosynthetic rate within and among
species of C3 plants (Evans 1989) and oaks
(Reich et al. 1995). Plants morphologically
similar to Q. gambelii in the hybrid popula-
tions maintained higher ∆ (hence higher ci/ca)
and leaf N concentration compared to Q. tur-
binella phenotypes. The positive relationship
between ∆ and N concentration in this study
is opposite of what is expected if nitrogen
forms a suitable proxy for photosynthetic capac-
ity. Higher N (greater photosynthetic capacity)
should cause ci/ca and ∆ to decline, not rise.
Furthermore, we found no correlation between
∆ and nitrogen content per unit leaf area, and
a negative relationship between ∆ and LMA.
Vitousek et al. (1990) observed similar correla-
tions between leaf δ13C and LMA for Met-
rosideros polymorpha across an elevational
gradient in Hawaii, and attributed δ13C varia-
tion to variation in leaf internal resistance. 

High internal resistance reduces CO2 concen-
tration at sites of carboxylation in the chloro-
plast and potentially lessens discrimination
against 13CO2 (Evans et al. 1986). Although
we found patterns of leaf carbon isotope varia-
tion and LMA in oak hybrid populations that
were similar to that reported by Vitousek et al.
(1990) for Metrosideros, we have no direct esti-
mates of ci/ca from instantaneous gas exchange
measurements to demonstrate conclusively the
magnitude of internal resistance. In any event,
some combination of high internal resistance
and low ci/ca produced the relatively high dis-
crimination values in Q. turbinella phenotypes
in our study.

Carbon isotope discrimination in the oak
hybrid populations was not related to water
source (δD) or plant water potential (Ψpd) dur-
ing our August sampling period. Tucker et al.
(1961) noted that these oak populations appar-
ently have undergone repeated hybridization
and backcrossing. Hybridization and further
recombination in these populations may have
reduced the level of integration between traits
that control rooting depth and leaf ∆. Leaf gas
exchange traits and rooting patterns appear to
be functionally integrated among parental and
F1 hybrids in the artificially maintained com-
mon garden populations near Salt Lake City
(Ehleringer and Phillips 1996), but these traits
are not functionally integrated in natural hybrid
populations in southwestern Utah. We found
no correlation between either predawn water
potential or δD and ∆ within our hybrid popu-
lations (Fig. 3). Introgression of genes into
populations of Q. turbinella that control devel-
opment of a deep root system remains a possi-
bility and would explain the high levels of
variation in δD among Q. turbinella pheno-
types in hybrid populations. 
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