Effect of Changes in Leaf Water Oxygen Isotopic Composition on Discrimination Against C18O16O During Photosynthetic Gas Exchange

Lawrence B. FlanaganA, Susan L. PhillipsB, James R. EhleringerB, Jon LloydC and Graham D. FarquharC

A Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada; author to whom all correspondence should be sent.
B Department of Biology, Stable Isotope Ratio Facility for Environmental Research, University of Utah, Salt Lake City, Utah 84112, USA.
C Environmental Biology Group, Research School of Biological Sciences, Institute of Advanced Studies, Australian National University, GPO Box 475, Canberra, ACT 2601, Australia.

Abstract

Photosynthetic gas exchange measurements were combined with measurements of the carbon and oxygen stable isotopic composition of CO\textsubscript{2} after it passed over a leaf of Phaseolus vulgaris or Senecio spp. plants held in a controlled environment chamber. Calculations were then made of discrimination by the leaf against C13CO\textsubscript{2} and C18O16O. Leaves were maintained at different vapour pressure gradients in order to generate a range of leaf water H18O/H16O ratios. The H18O content of leaf water increased when plants were exposed to higher vapour pressure deficits. The observed C18O16O discrimination values also increased with an increase in the leaf-air vapour pressure gradient and the associated change in leaf water H18O/H16O values. In addition, the observed C18O16O discrimination values were strongly correlated with values predicted by a mechanistic model of isotopic fractionation.

Introduction

During photosynthetic gas exchange, the C13/C12 ratio of atmospheric CO\textsubscript{2} is increased as air passes over a leaf (Evans \textit{et al.} 1986). In C\textsubscript{3} plants, carbon isotopic discrimination occurs primarily because of differences in diffusion rates between C13CO\textsubscript{2} and C12CO\textsubscript{2}, and because of differences in the rates that ribulose-1,5-bisphosphate carboxylase (Rubisco) uses the two molecules in the principal carboxylation reaction (Farquhar \textit{et al.} 1989). The H18O/H16O ratio of atmospheric CO\textsubscript{2} is also changed as air passes over a leaf. Exchange between oxygen in CO\textsubscript{2} and oxygen in chloroplast water has been suggested to be the primary process responsible for H18O discrimination during photosynthesis (Francey and Tans 1987; Friedli \textit{et al.} 1987).

Farquhar and Lloyd (1993, 1994) and Farquhar \textit{et al.} (1993) described a mechanistic model of H18O fractionation processes during CO\textsubscript{2} exchange. The model predicts that when the isotopic composition of chloroplast water is held constant, C18O16O discrimination should vary with changes in the partial pressure of CO\textsubscript{2} in the chloroplast, which in turn is dependent on the ratio of photosynthetic capacity and stomatal and wall conductance. The stable isotopic composition of leaf and chloroplast water is not normally constant, however, but is altered by fractionation processes that occur during transpiration (for a review see Flanagan 1993). The H18O/H16O ratio of leaf and chloroplast water depends primarily on the leaf-air vapour pressure gradient, the larger the gradient the higher the H18O/H16O ratio of leaf water (Flanagan 1993). In the initial experimental tests of the mechanistic model of C18O16O discrimination, comparisons were made between observed

0310-7841/94/020221505.00
and predicted C^{18}O^{16}O discrimination when environmental conditions were altered to induce variation in the ratio of photosynthetic capacity and stomatal conductance and thereby cause large changes in the chloroplast CO\textsubscript{2} partial pressure (Farquhar et al. 1993). In the experiments described here, plant leaves were maintained at different leaf–air vapour pressure gradients in a controlled environment gas exchange chamber in order to generate a range of leaf water 18O/16O ratios. Measurements were then made of the carbon and oxygen isotopic composition of CO\textsubscript{2} before and after it passed over a leaf with a steady, leaf water oxygen isotopic composition. As expected, the observed C^{18}O^{16}O discrimination values increased with an increase in the leaf–air vapour pressure gradients and the associated change in leaf water 18O/16O values. In addition, the observed C^{18}O^{16}O discrimination values were strongly correlated with values predicted by the mechanistic model of isotopic fractionation.

Materials and Methods

Plant Material and Growing Conditions

Phaseolus vulgaris cv. UNS 117 plants were germinated in 0·012 m3 pots that were made from polyvinylchloride pipe and contained a soil made from one part vermiculite to two parts Utah soil mix that has been previously described (Comstock and Ehleringer 1988). Plants were grown in a glasshouse at the University of Utah, Salt Lake City with supplemental lighting provided by an alternating bank of metal halide and sodium vapour lamps as previously described (Flanagan et al. 1991b).

Small rosettes of the closely related species *Senecio streptanthifolius*, *S. streptanthifolius* var. *rubricaulis* and *S. multilobatus* (Bain 1983; Barkley 1988; hereafter referred to as *Senecio* spp.) were collected at a variety of locations in Utah, the roots were washed and wrapped in moist paper and the plants shipped via air to Carleton University, Ottawa. Plants were put in 0·1 m diameter pots containing soil made from equal parts peat, vermiculite and perlite. Plants were grown in a glasshouse with supplemental lighting provided by a bank of fluorescent lights. Gas exchange experiments were started after the plants had been growing in the glasshouse for over two months. Only mature leaves, produced while the plants were in the glasshouse, were used in the experiments.

Gas Exchange Measurements, and CO\textsubscript{2} and Water Collection

In Salt Lake City measurements of CO\textsubscript{2} and water vapour flux were made using an open gas exchange system as previously described (Ehleringer 1983; Ehleringer et al. 1992). In Ottawa measurements of CO\textsubscript{2} and water vapour flux were made with an open gas exchange system similar to the one described in detail by Parkhurst and Mott (1990) (MPH 1000 Gas exchange system, Campbell Scientific Inc., Logan, Utah; ADC 225-MK 3 infrared gas analyser, Analytical Development Co., Hoddesdon, Herts, England). A mature leaflet of *P. vulgaris* or an entire leaf of *Senecio* spp. were sealed into the leaf chamber and maintained under conditions of controlled temperature, humidity, light and CO\textsubscript{2} concentration. In both gas exchange systems humidification of the leaf chamber was entirely the result of evaporation of water from the leaf, since only dry air entered the leaf chamber. Humidity levels were varied by altering the flow rate of dry air entering the leaf chamber. All gas exchange calculations were done using the equations of Ball (1987) and Caemmerer and Farquhar (1981). Boundary layer conductance in the leaf chamber was approximately 2 mol m-2 s-1.

The water vapour and CO\textsubscript{2} in the air of the leaf chamber was collected by passing a portion of the air exiting the chamber through ethanol-dry ice traps to collect the water vapour, and liquid nitrogen traps to collect the CO\textsubscript{2} (Evans et al. 1986; Ehleringer et al. 1992). Pressure in the trap line was maintained at approximately 5 kPa during CO\textsubscript{2} collection in order to avoid the condensation of oxygen. In experiments with *P. vulgaris*, the leaflet was removed from the chamber immediately after gas exchange measurements were complete, and placed in a glass tube which was sealed with a rubber stopper and wrapped with Parafilm. A stem or petiole sample was also collected at the same time and sealed in a glass tube. The plant samples were then frozen until water was extracted from the tissue using a cryogenic vacuum distillation apparatus.
Isotopic Analysis

Water samples were prepared for measurements of oxygen isotopic composition by converting the oxygen in water to CO₂ using the guanidine hydrochloride method (Wong et al. 1987). The CO₂ gas from the guanidine hydrochloride technique and the CO₂ samples collected from the gas trapping line were then analysed for carbon and oxygen isotopic composition on a Finnigan-MAT delta S gas isotope ratio mass spectrometer. Precision of the method for water samples was checked by making repeated measurements of SMOW. Precision was found to be ±0.12‰ during the course of this study. Precision of the measurements for CO₂ samples collected on the gas trapping line was checked by making repeated collection of air samples passed through the leaf chamber with no leaf present. In Salt Lake City the standard deviation for 14 measurements of δ¹³C was 0.17‰, in Ottawa the standard deviation for nine measurements of δ¹³C was 0.03‰.

Isotopic compositions were expressed using lower case delta notation:

\[
\delta = \frac{R_{\text{Sample}}}{R_{\text{Standard}}} - 1
\]

where \(R \) is the molar ratio of the heavy to light isotope (e.g. \(^{18}\text{O} / ^{16}\text{O}\)). The results are conveniently presented in parts per thousand (‰). Stem water and atmospheric water vapour isotopic ratios were expressed relative to SMOW. The isotopic composition of CO₂ was expressed relative to that of the PDB standard.

Isotopic discrimination (\(\Delta \)) during photosynthetic gas exchange was calculated from the isotopic composition of air leaving the leaf chamber with (\(\delta_{\text{L}} \)) and without (\(\delta_{\text{A}} \)) a leaf present, as shown below (Evans et al. 1986):

\[
\Delta = \frac{\xi(\delta_{\text{A}} - \delta_{\text{L}})}{1 + \delta_{\text{A}} - \xi(\delta_{\text{L}} - \delta_{\text{A}})},
\]

where \(\xi = c_{\text{e}}/(c_{\text{e}} - c_{\text{a}}) \) and \(c_{\text{e}} \) and \(c_{\text{a}} \) are the partial pressures of CO₂ in the air, when the air is dried, entering (\(e \)) and leaving (\(a \)) the chamber while a leaf was present. The value of \(\xi \) varied, over the range 2.8–10.6, in experiments conducted at different humidity levels with \(P. \text{vulgaris} \). The value of \(\xi \) varied, over the range 9.3–12.9, in experiments conducted with \(\text{Senecio} \) spp. The isotopic measurements of CO₂ were corrected for the presence of N₂O using the method described by Caemmerer and Evans (1991). The CO₂ collections from air passing through the empty leaf chamber were made with a CO₂ partial pressure close to that of the air stream exiting the chamber when a leaf was present (approximately 35 Pa). This resulted in only small corrections for N₂O, typically +0.13‰ for \(^{13}\text{C} / ^{12}\text{C} \) and +0.14‰ for \(^{18}\text{O} / ^{16}\text{O} \).

Modelling Isotopic Discrimination

There are two major processes influencing discrimination against C\(^{18}\text{O} / ^{16}\text{O} \) during photosynthetic gas exchange (Farquhar and Lloyd 1993, 1994). The first process is fractionation that occurs during diffusion. The CO₂ molecules containing \(^{18}\text{O} \) are heavier and, therefore, diffuse at a slower rate than \(^{16}\text{O} \). The second process is oxygen isotope exchange that occurs between CO₂ molecules and H₂O in the chloroplast. During the exchange reaction, the oxygen isotope ratio of CO₂ becomes enriched relative to that of chloroplast water. A portion of the CO₂ that enters the leaf and equilibrates with chloroplast water is not fixed and diffuses back out of the leaf with an altered oxygen isotope ratio. The amount of CO₂ that escapes from the leaf depends on the partial pressure of CO₂ in the chloroplast and resistances to diffusion within and outside the leaf. The oxygen isotope ratio of CO₂ leaving the leaf will depend on three factors:

1. the oxygen isotope composition of chloroplast water;
2. leaf temperature, which influences the equilibrium fractionation factor for the CO₂–H₂O exchange reaction;
3. fractionation during diffusion of CO₂ out of the leaf.

The model of Farquhar and Lloyd (1993, 1994) (equations described below) was used to predict the discrimination by leaves under controlled environmental conditions.
Discrimination during diffusion

The isotope effect (α) that occurs during diffusion can be defined as the ratio of the diffusion coefficients for 13C$_2$O and 15O16O molecules. For numerical convenience we present fractionation factors using discrimination notation (Δ), which is defined as the deviation of an isotope effect from unity as shown below (Farquhar et al. 1989):

$$\Delta = \alpha - 1.$$

Equation (4) describes the weighted average of the fractionation factors during the diffusion of 18O16O from the atmosphere to the chloroplast:

$$\bar{\alpha} = \frac{a_{a}(c_{a} - c_{c}) + a_{s}(c_{s} - c_{c}) + a_{w}(c_{w} - c_{c})}{c_{a} - c_{c}},$$

where c is the partial pressure of CO$_2$, and the subscripts a, s, i and c refer to the atmosphere, leaf surface, intercellular air spaces and chloroplast, respectively. The symbol a represents the discrimination during diffusion of 18O16O at various steps in the atmosphere-chloroplast pathway, where the subscript b refers to diffusion through the leaf boundary layer, s diffusion through the stomata, and w the combination of dissolution of CO$_2$ into water and diffusion of CO$_2$ through water. The values for the diffusional discrimination factors for 18O16O are a_{a} (5.8%), a_{s} (8.8%) and a_{w} (0.8%).

Isotope composition of leaf and chloroplast water

It is very difficult to measure the isotope composition of chloroplast water on a routine basis. For experiments in this paper we assume that chloroplast water has an isotopic composition identical to that of water at the evaporative sites within leaves. The isotope composition of water at the evaporative sites can be calculated using a model of isotopic fractionation, originally developed by Craig and Gordon (1965) for evaporation from the ocean. The model can be expressed in the following form (Flanagan et al. 1991b):

$$R_{e} = \alpha_{a} \left[\alpha_{k} \left(\frac{e_{b} - e_{r}}{e_{1}} \right) + \alpha_{kb} \left(\frac{e_{b} - e_{a}}{e_{1}} \right) + R_{a} \left(\frac{e_{a}}{e_{l}} \right) \right].$$

where R is the molar ratio of the heavy to light isotope and the subscripts e, s and a refer to water at the evaporation sites within leaves, stem water and atmospheric water vapour, respectively; e is the partial pressure of water vapour and the subscripts i, s and a refer to the leaf intercellular air spaces, the leaf surface and the ambient air, respectively; α_{a} is the equilibrium isotope effect. The regression equations listed by Majoube (1971) were used to calculate values for the parameter α_{a} at specific leaf temperatures. α_{k} is the kinetic isotope effect for diffusion through the stomatal pore which is determined by the relative rates of molecular diffusion of the light and heavy isotope molecules in air. The 18O18O value for α_{a} is 1.0285 (Merrill 1978). α_{kb} is the kinetic isotope effect in a boundary layer and the 16O18O value for α_{kb} is 1.0189 (Farquhar et al. 1988).

The isotope ratio of water at the evaporative sites (R_{e}) was expressed relative to stem water, using upper case delta notation (Δ, discrimination):

$$\Delta = \left[\frac{R_{Sample}}{R_{Stem}} - 1 \right].$$

Measurements of the isotope ratio of total water extracted from leaves (R_{l}) were also expressed relative to stem water using equation (6).

We compared predictions of the evaporative enrichment model (expressed as Δ_{L} using equation (6)) to measurements of the oxygen isotope composition of total water extracted from plant leaves (expressed as Δ_{L} using equation (6)). Bulk leaf water should not be as enriched in 18O as the water at the evaporative sites because of gradients in the isotope composition of water in plant leaves. The gradients are predicted to result from a shifting balance between the bulk flow of unfractionated water into the leaf and the back diffusion of heavy isotope molecules away from the sites of evaporative enrichment. The model of Farquhar and Lloyd (1993, 1994) was used to relate the isotopic ratio of total foliage water (Δ_{L}) to that at the evaporative sites within leaves (Δ_{R}) as shown below:

$$\Delta_{L} = \frac{CD}{EL} \Delta_{R} \left(1 - e^{-EL/CD} \right),$$

where CD is the carbon diffusion rate and EL is the leaf area.
where C is the molar concentration of water (5.55×10^4 mol m$^{-3}$); D is the diffusivity of H$_2^{18}$O (2.66 \times 10$^{-9}$ m2 s$^{-1}$ in water (Wang 1954)); E is the transpiration rate (mol m$^{-2}$ s$^{-1}$); and L is the effective pathlength (m), averaged over the total leaf, for movement of water from leaf xylem veins (unfractionated) to the sites of evaporative, isotopic enrichment.

Oxygen isotope exchange reaction

In the chloroplast, carbonic anhydrase catalyses the hydration of CO$_2$ and dehydration of HCO$_3^-$ to facilitate the diffusion of CO$_2$ to the sites of carboxylation. It is assumed that carbonic anhydrase activity acts to fully equilibrate CO$_2$ with chloroplast water. At full isotopic equilibrium, CO$_2$ in the chloroplast will have the following composition:

$$R_c = R_w \alpha_{bc},$$

where α_{bc} is the equilibrium CO$_2$-H$_2$O exchange isotope effect at the leaf temperature (Bottlinga and Craig 1969), and R_w is the isotopic composition of chloroplast water (which is assumed to be equal to that of the water at the evaporation sites, R_e, as described by equation (5)). The 18O/16O ratio of CO$_2$ in the chloroplast (R_c) is expressed relative to that of the oxygen isotope composition of atmospheric CO$_2$ (R_a), as shown below:

$$\Delta_{ca} = \left[\frac{R_c}{R_a} - 1 \right].$$

Discrimination during photosynthetic gas exchange

Discrimination against C18O16O during photosynthetic gas exchange is described by the following equation (Farquhar and Lloyd 1993, 1994):

$$\Delta C^{18}O^{16}O = \frac{\bar{a} + \frac{c_c}{c_a - c_c} \Delta_{ca}}{1 - \frac{c_c}{c_a - c_c} \Delta_{ca}}.$$

(10)

The CO$_2$-H$_2$O exchange reaction in the chloroplast determines the isotopic composition of CO$_2$ in the chloroplast (R_c), which is expressed relative to the isotopic composition of atmospheric CO$_2$ (R_a) in the term Δ_{ca} (equation (9)). The influence of the oxygen isotopic composition of chloroplast CO$_2$ on discrimination by the leaf depends on how much CO$_2$ diffuses out of the leaf after equilibrating with chloroplast water. The term $(c_c/(c_a - c_c))$ defines the amount of CO$_2$ that diffuses out of the leaf. The term \bar{a} describes the net fractionation during diffusion of CO$_2$ into and out of the leaf.

The isotopic equilibrium between CO$_2$ and water in the chloroplast may not be complete, depending on the relative activities of carbonic anhydrase and Rubisco. Equation (10) can be modified to account for incomplete isotopic equilibrium as shown below (Farquhar and Lloyd 1993, 1994):

$$\Delta C^{18}O^{16}O = \frac{\bar{a}(1 + 3\sigma) + \frac{c_c}{c_a - c_c} (\Delta_{ca} + 3\sigma b)}{1 - \frac{c_c}{c_a - c_c} \Delta_{ca} + 3\sigma \frac{c_c}{c_a - c_c}},$$

(11)

where σ is the ratio of the rate of carboxylation by Rubisco to the rate of hydration of CO$_2$ by carbonic anhydrase, and b represents fractionation against C18O16O during carboxylation. The factor 3 occurs because HCO$_3^-$ has three times as many oxygen atoms as water.

Including the effects of dark respiration and photorespiration, equation (11) can be modified as shown below (Farquhar and Lloyd 1994):

$$\Delta C^{18}O^{16}O = \frac{\bar{a}(1 + 3\sigma^*) + \frac{c_c}{c_a - c_c} (\Delta_{ca} + 3\sigma b + 3m\Delta_{me})}{1 - \frac{c_c}{c_a - c_c} \Delta_{ca} + 3\sigma^* \frac{c_c}{c_a - c_c}}.$$

(12)
where a^* is the ratio of the rate of assimilation to the rate of hydration of CO$_2$ by carbonic anhydrase, Δ_{mc} is $R_m/R_c - 1$, the difference in isotopic composition between CO$_2$ evolved by the mitochondria and that in the chloroplast and m is the ratio of mitochondrial CO$_2$ evolution to hydration.

If carbonic anhydrase activity is low, and the rates of hydration of CO$_2$ and dehyrdration of HCO$_3^-$ are slow relative to the rate of carboxylation catalysed by Rubisco, equations (11) and (12) can be reduced to the following:

$$\Delta C^{18}O^{16}O = a\frac{c_a - c_c}{c_a} + b\frac{c_c}{c_a}, \quad (13)$$

which is analogous to that for 13CO$_2$ discrimination (Farquhar et al. 1989).

Results

When exposed to progressively higher vapour pressure deficits, P. vulgaris leaves showed the expected decline in intercellular/ambient CO$_2$ ratios and a correlated decline in carbon isotope discrimination (Fig. 1) as predicted by theory (Farquhar et al. 1989). In addition isotopic discrimination during transpiration ($\Delta H_2^{18}O$) increased as expected when leaves were exposed to higher vapour pressure deficits. In contrast to Δ^{13}CO$_2$, there was an increase in $\Delta C^{18}O^{16}O$ as leaf-air vapour pressure difference was increased, and this was positively correlated with the change in leaf water 18O composition (Fig. 1).

![Graphs showing relationship between vapour pressure difference and isotope discrimination](image)

Fig. 1. The effect of changes in the leaf-air vapour pressure difference on the ratio of intercellular CO$_2$/ambient CO$_2$, the carbon and oxygen isotopic discrimination during on-line CO$_2$ assimilation measurements (Δ^{13}CO$_2$, $\Delta C^{18}O^{16}O$), and total leaf water oxygen isotopic discrimination ($\Delta H_2^{18}O$) in Phaseolus vulgaris. Data points represent means ± one standard deviation, $n = 3$. Environmental conditions during measurements were: light intensity (400–700 nm), 1600 μmol m$^{-2}$ s$^{-1}$; leaf temperature, 30°C; stem water $\delta^{18}O_{SMOW} = -15.3 ± 0.2\%o$, $n = 9$; atmospheric water vapour $\delta^{18}O_{SMOW} = -14.7 ± 0.7\%o$, $n = 9$; isotopic composition of CO$_2$ entering the leaf chamber, $\delta^{13}C_{PDB} = -8.69 ± 0.17\%o$, $n = 14$, $\delta^{18}O_{SMOW} = -3.63 ± 0.35\%o$, $n = 14$.
The 18O content of bulk leaf water increased in leaves exposed to high vapour pressure deficits as predicted by the evaporative enrichment model (Flanagan et al. 1991b). The observed leaf water isotopic discrimination (ΔH_2^{18}O), however, was less than that predicted by the evaporative enrichment model (Table 1). The extent of the difference between observed and modelled ΔH_2^{18}O values increased as the vapour pressure difference increased (Table 1). The difference between the isotopic composition of water extracted from an entire leaf and that predicted by the model may result from a shifting balance between the bulk flow of unfraccionated liquid water into the leaf (convection) and the back diffusion of heavy isotope molecules away from the evaporative sites within leaves (Farquhar and Lloyd 1993, 1994). The transpiration rate of a leaf and the path length for water movement through a leaf are factors that will determine the magnitude of the difference between calculated isotopic discrimination at the sites of evaporative enrichment and the measured total leaf water isotopic discrimination (Farquhar and Lloyd 1993, 1994). A graphical presentation of the convection-diffusion model of mixing of isotopes in leaf water is shown in Fig. 2. The top panel shows the fractionational difference between modelled and observed leaf water ΔH_2^{18}O values plotted as a function of transpiration rate for data obtained from experiments illustrated in Fig. 1 and Table 1. The bottom panel shows data collected in separate experiments with P. vulgaris by Flanagan et al. (1991b). The solid lines in Fig. 2 represent predictions of the convection-diffusion model (equation (7)) with path length values of 8.5 mm (top panel) and 6.25 mm (bottom panel). The observed data are consistent with the convection-diffusion model predictions suggesting that water at the evaporative sites within leaves has an isotopic composition close to that predicted by the evaporative enrichment model.

Table 1. The effect of changes in leaf-air vapour pressure difference (VPD, kPa) on oxygen isotopic discrimination during transpiration (ΔH_2^{18}O, $\%_o$) in Phaseolus vulgaris

<table>
<thead>
<tr>
<th>VPD</th>
<th>Whole leaf</th>
<th>Evaporative sites</th>
<th>Chloroplast water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ_{18}O</td>
<td>$b=27\cdot5$</td>
<td>$f=7$</td>
</tr>
<tr>
<td>1.05</td>
<td>12.3±0.4</td>
<td>15.5±0.9</td>
<td>11.8±1.0</td>
</tr>
<tr>
<td>2.00</td>
<td>15.9±0.5</td>
<td>20.7±0.5</td>
<td>16.5±8.6</td>
</tr>
<tr>
<td>3.00</td>
<td>19.7±2.0</td>
<td>25.7±0.2</td>
<td>22.3±6.2</td>
</tr>
</tbody>
</table>

The observed 13CO$_2$ values in P. vulgaris increased with an increase in intercellular/ambient CO$_2$ ratios as predicted by theory. However, the observed values were less than predicted 13CO$_2$ values for all observed intercellular ambient CO$_2$ ratios (Fig. 3). The differences between observed and theoretical carbon isotope discrimination values were likely a result of limitation imposed by CO$_2$ transfer conductance from the leaf intercellular air spaces to the chloroplast, and the resulting difference between intercellular and chloroplast CO$_2$ partial pressures (Caemmerer and Evans 1991; Lloyd et al. 1992). Ignoring the influence of dark respiration, it is possible to use measured 13CO$_2$ values (Δ_{mb}) and concurrently measured gas exchange characteristics to estimate the CO$_2$ partial pressure in the chloroplast using the following equations:
\[
\frac{c_c}{c_a} = \frac{c_i}{c_a} \frac{\Delta_l - \Delta_{obs} - f \Gamma^*}{b - a_w},
\]
where
\[
\Delta_l = a_b \frac{c_a - c_2}{c_a} + a_c \frac{c_1 - c_i}{c_a} + b \frac{c_1}{c_a}.
\]

The symbols \(\Delta_l\), \(a\), \(a_b\), \(a_w\), \(b\) are defined above but now refer to discrimination against \(^{13}\text{CO}_2\), rather than discrimination against \(^{15}\text{O}_2\). \(f\) is the fractionation with respect to average carbon composition associated with photorespiration, and \(\Gamma^*\) is the \(\text{CO}_2\) partial pressure at the compensation point in the absence of respiration during the day. The values used in the calculations were, \(a\) (4.4\%), \(a_b\) (2.9\%), and \(a_w\) (1.8\%) and values for \(\Gamma^*\) were calculated from the regression equation listed by Brooks and Farquhar (1985). Calculations were done with two different values of \(b\) (27.5\%, 29\%) and \(f\) (0\%, 7\%) (Rooney 1988; Lloyd et al. 1992). The chloroplast \(\text{CO}_2\) partial pressures, calculated using the above equations, were used for interpreting \(\Delta^{15}\text{O}\) measurements.

Fig. 2. The influence of transpiration rate on the fractional difference between the modelled (\(\Delta_l\)) and observed (\(\Delta_l\)) leaf water oxygen isotopic discrimination in *Phaseolus vulgaris*. The data shown in panel (a) are from experiments reported here, and the data in panel (b) are from similar experiments reported by Flanagan et al. (1991b). The modelled values were calculated with equations (5) and (6) for water at the evaporative sites within leaves. The lines represent calculations done with equation (7), using different values for the effective pathlength for water movement (panel (a) the \(L\) value was: 8.5 mm, panel (b) the \(L\) value was 6.25 mm).

Fig. 3. The effect of changes in the ratio of intercellular \(\text{CO}_2/\text{ambient \(\text{CO}_2\)} on carbon isotopic discrimination in *Phaseolus vulgaris*. The lines represent the simple theoretical relationship,
\[
\Delta^{13}\text{CO}_2 = \frac{a_2 - c_i}{c_a} + b \frac{c_1}{c_a},
\]
with values of \(a = 4.4\%\) and \(b = 27.5\%\) for the solid line, and \(a = 4.4\%\) and \(b = 29\%\) for the broken line (Farquhar et al. 1989; Lloyd et al. 1992). The environmental conditions during gas exchange measurements are listed in Fig. 1.
Table 2. The influence of fractionation factor estimate on calculated values of the partial pressure of CO₂ in the chloroplast (cₑ) and modelled values of discrimination against C¹⁸O₁⁶O (ΔC¹⁸O₁⁶O) for *Phaseolus vulgaris* and *Senecio* spp.

The values of b (fractionation by Rubisco against C¹³O₂) and f (fractionation with respect to average carbon composition associated with photorespiration) were altered in equations (14) and (15) and the effect on calculated cₑ was determined. The value of cₑ is expressed as the difference (cₑ - cₒ), for intercellular CO₂ partial pressure (cₒ) measured at an ambient CO₂ of approximately 35 Pa. The calculated cₑ values were then used in equation (10) to calculate ΔC¹⁸O₁⁶O. Average values (± standard deviation, n = 9) are shown for both species. The environmental conditions during gas exchange measurements are listed in the captions to Figs 1 and 4.

<table>
<thead>
<tr>
<th>b (‰)</th>
<th>f (‰)</th>
<th>P. vulgaris (cₑ - cₒ) (Pa)</th>
<th>Senecio spp. (cₑ - cₒ) (Pa)</th>
<th>P. vulgaris ΔC¹⁸O₁⁶O (‰)</th>
<th>Senecio spp. ΔC¹⁸O₁⁶O (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.5</td>
<td>7</td>
<td>0.7 ± 1.2</td>
<td>5.5 ± 1.1</td>
<td>97 ± 20</td>
<td>89 ± 16</td>
</tr>
<tr>
<td>27.5</td>
<td>0</td>
<td>1.9 ± 1.2</td>
<td>6.7 ± 1.1</td>
<td>82 ± 17</td>
<td>76 ± 13</td>
</tr>
<tr>
<td>29</td>
<td>7</td>
<td>2.1 ± 1.2</td>
<td>6.8 ± 1.0</td>
<td>80 ± 16</td>
<td>75 ± 11</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>3.2 ± 1.2</td>
<td>7.9 ± 1.0</td>
<td>70 ± 14</td>
<td>65 ± 9</td>
</tr>
</tbody>
</table>

There was good agreement between the observed ΔC¹⁸O₁⁶O values and the modelled predictions of equation (10) for both *P. vulgaris* and *Senecio* spp. (Fig. 4). The modelled predictions of ΔC¹⁸O₁⁶O, however, were sensitive to the values used for the fractionation factors b and f (Table 2). An increase in the value of b, while f remained constant, resulted in a lower value of cₑ and a lower predicted ΔC¹⁸O₁⁶O value. In contrast, an increase in f, while b remained constant, resulted in a higher cₑ and higher predicted ΔC¹⁸O₁⁶O value (Table 2). Good correlation between observed and modelled ΔC¹⁸O₁⁶O values was obtained with b = 27·5‰, f = 0‰ for both *P. vulgaris* and *Senecio* spp. (Fig. 4).

Fig. 4. Comparison of modelled and observed C¹⁸O₁⁶O discrimination. Complete isotopic equilibrium between oxygen in CO₂ and chloroplastic water was assumed for model calculations. The isotopic composition of water in the chloroplast was assumed to be equal to that at the evaporative sites within leaves, calculated using equation (5). (a) *Phaseolus vulgaris*, modelled C¹⁸O₁⁶O discrimination values were calculated with cₑ values estimated using b = 27·5, f = 0 in equations (14) and (15). Environmental conditions are listed in the caption to Fig. 1. (b) *Senecio* spp., modelled C¹⁸O₁⁶O discrimination values were calculated with cₑ values estimated using b = 27·5, f = 0 in equations (14) and (15). Environmental conditions during measurements were: light intensity (400-700 nm), 1600 μmol m⁻² s⁻¹; leaf temperature, 25°C; leaf-air vapour difference ranged from 1·44 to 1·67 kPa; source water δ¹⁸O_SMOW = -10·0 ± 0·1‰; n = 2; isotopic composition of CO₂ entering the leaf chamber, δ¹³C_FPD = -35·02 ± 0·03‰, n = 9, δ¹⁸O_SMOW = 10·20 ± 0·09‰, n = 9.
Calculations of $\Delta C^{18}O^{16}O$ using equation (10) were done assuming that the oxygen isotopic composition of water in chloroplasts was the same as the isotopic composition of water at the evaporative sites within leaves as predicted by equation (5). This appeared to be a good assumption because back calculations of the isotopic composition of chloroplast water (R_w and associated $\Delta H_2^{18}O$ values), from observed $\Delta C^{18}O^{16}O$ values and concurrently measured gas exchange characteristics using equations (8) and (10), were more closely related to the isotopic composition of water at the evaporative sites (R_e) than to that of bulk leaf water (Table 1). However, the calculation of the isotopic composition of chloroplast water from measured $\Delta C^{18}O^{16}O$ values was dependent on the values used for the fractionation factors b and f (Table 1).

Discussion

As observed in several previous studies, the Craig and Gordon (1965) evaporative enrichment model overestimates the degree of isotopic enrichment observed in whole leaves (Table 1; Dongmann et al. 1974; Allison et al. 1985; Leaney et al. 1985; Bariac et al. 1989; Walker et al. 1989; Walker and Brunel 1990; Yakir et al. 1990; Flanagan et al. 1991a, 1991b; Walker and Lance 1991), and the possible factors contributing to this difference have been previously discussed (Farquhar and Lloyd 1993, 1994; Flanagan 1993). Because the Craig–Gordon (1965) model predicts the isotopic composition of water at the evaporative sites, it is expected to overestimate the isotopic enrichment of whole leaf water. The isotopic composition of whole leaf water should represent a continuum from unfraccionated water in leaf xylem tissue to water maximally enriched in heavy isotopes at the sites of evaporation within leaves. Such a continuum of water with progressively different isotopic compositions has been observed by Yakir et al. (1989), when they sampled different aliquots of water pushed out of a leaf by a pressure chamber. The convection–diffusion model of Farquhar and Lloyd (1993, 1994) predicts that the difference between whole leaf water isotopic composition and that calculated by the evaporative enrichment model should vary with transpiration rate and the effective path length for water movement through leaves. Data presented in this paper and similar experiments conducted by Flanagan et al. (1991b) suggest that the effective path length for water movement in P. vulgaris leaves is approximately 6.0–9.0 mm. This effective path length will be much larger than direct measurements of leaf anatomical properties (i.e. distance from vein to intercellular air space), because of the complex movement of water through leaves to the sites of evaporation. Equation (7) is also affected by heterogeneity in gas exchange characteristics across the leaf surface which results in an overestimation of the effective path length (Farquhar and Lloyd 1994). Flanagan et al. (1993) calculated the effective path length to be 22 mm for foliage in a xylem-tapping mistletoe (Phoradendron juniperinum), and 27 mm in the host tree species (Juniperus osteosperma) based on measurements of gas exchange and leaf water isotopic discrimination under field conditions, where within-leaf heterogeneity in gas exchange characteristics was likely.

It is important to know the oxygen isotopic composition of chloroplast water, within the heterogeneous mixture of total leaf water, in order to predict the extent of $C^{18}O^{16}O$ discrimination during photosynthetic gas exchange. Yakir et al. (1993) have measured the isotopic composition of oxygen evolved during photosynthesis in order to directly determine the oxygen isotopic composition of chloroplast water. Such an approach is based on the observation of no isotopic fractionation during the water splitting reaction of photosystem II (Guy et al. 1993). The results obtained by Yakir et al. (1993) indicated that chloroplast water is less enriched in ^{18}O than bulk leaf water. In contrast our results, based on back calculation from observed $\Delta C^{18}O^{16}O$ values and associated gas exchange measurements, suggest that the oxygen isotopic composition of chloroplast water is more similar to that of water at the evaporative sites within leaves and is enriched above that of bulk leaf water, although our calculations are dependent on assumptions about the fractionation
factors b and f (Table 1). Further work is required to determine the oxygen isotopic composition of chloroplast water during photosynthesis under a range of environmental conditions.

There was good agreement between observed and modelled $\Delta C^{18}O^{16}O$ values (Fig. 4). The modelled $\Delta C^{18}O^{16}O$ values were calculated assuming the oxygen isotopic composition of water in the chloroplasts was the same as the isotopic composition of water at the evaporative sites, and by assuming there was complete isotopic equilibrium in the chloroplast between oxygen in CO$_2$ and oxygen in water. Full isotopic equilibrium between CO$_2$ and water in the chloroplast would require a large amount of carbonic anhydrase and could be very costly in terms of nitrogen invested in the protein (Cowan 1988). Several studies have indicated, however, that leaves of many C$_3$ plants have high carbonic anhydrase activity (Reed and Graham 1980; Makino et al. 1992). In addition, the activity of carbonic anhydrase may be decreased quite substantially (15%) before CO$_2$ assimilation is inhibited (Edwards and Mohamed 1973; Randall and Bouma 1973; Jacobson et al. 1975). Six of the nine observed $\Delta C^{18}O^{16}O$ values for $P. vulgaris$ were lower than values predicted by equation (10) (Fig. 4). The observed values for those six points are consistent with incomplete isotopic equilibrium between chloroplast CO$_2$ and water. Estimates of q, the ratio of the rate of carboxylation by Rubisco to the rate of hydration of CO$_2$ by carbonic anhydrase, were made by adjusting q values in equation (11) until predicted $\Delta C^{18}O^{16}O$ values matched observed values. These calculations were done for three values of discrimination by Rubisco against $C^{18}O^{16}O$, 0%, 15%o and 30%o, resulting in q values of 0.013 ± 0.008, 0.016 ± 0.009 and 0.019 ± 0.011 (means ± standard deviation, $n = 6$), respectively. Adjusting the value of the fractionation factors used to calculate c_e and $\Delta C^{18}O^{16}O$ in Fig. 4 from $b = 27.5, f = 0$ to $b = 27.5, f = 7$ resulted in eight observed $\Delta C^{18}O^{16}O$ values below that predicted by equation (10). Calculation of q in equation (11) for three values of discrimination by Rubisco against $C^{18}O^{16}O$, 0%, 15%o and 30%o, resulted in values of 0.025 ± 0.012, 0.029 ± 0.014 and 0.036 ± 0.016 (means ± standard deviation, $n = 8$), respectively. These results suggest that Rubisco catalysed carboxylation occurs at only 1-3% of the rate of carbonic anhydrase catalysed hydration/dehydration of CO$_2$. The carbon dioxide in the chloroplast should, therefore, be at or very near oxygen isotopic equilibrium with chloroplast water.

The good agreement between modelled and observed $\Delta C^{18}O^{16}O$ values is encouraging (Fig. 4), however several uncertainties remain to be investigated further. The modelled values of $\Delta C^{18}O^{16}O$ are strongly dependent on a non-linear relationship with c_e, the partial pressure of CO$_2$ in the chloroplast (Farquhar et al. 1993). A large increase in the modelled $\Delta C^{18}O^{16}O$ value (typically 30–359%) in the conditions used for our experiments occurs with a change in the ratio of chloroplast CO$_2$ to ambient CO$_2$ from 0.45 to 0.65, a range of variation in c_e/c_a that may regularly occur in C$_3$ plants. An error or uncertainty in the value of c_e can cause a large change in the predicted value of $\Delta C^{18}O^{16}O$. The techniques used to estimate c_e in our experiments are strongly influenced by heterogeneities in leaf gas exchange properties (Lloyd et al. 1992). Non-uniform stomatal closure and spatial variation in leaf photosynthetic gas exchange properties may be a common occurrence when leaves are exposed to low humidities (Mott et al. 1993), as was done in our experiments with $P. vulgaris$. The calculations of c_e are also dependent on the values of fractionation factors b and f used in equations (14) and (15) (Table 2), although the values we used for b and f in Fig. 4 are reasonable (Farquhar et al. 1989; Lloyd et al. 1992). The uncertainties described above set constraints on the confidence that can be placed on calculated estimates of q, the activity ratio of Rubisco to carbonic anhydrase in the chloroplast, and the oxygen isotopic composition of chloroplast water, calculated from observed $\Delta C^{18}O^{16}O$ values and concurrently measured gas exchange characteristics.

Knowledge of the physiological processes involved in C$^{18}O^{16}O$ discrimination may contribute to an improved understanding of the global carbon cycle. Farquhar et al. (1993) have used the leaf level C$^{18}O^{16}O$ discrimination model (equation (10)) to develop a global model that predicts the influence of terrestrial vegetation on the oxygen isotopic ratio of
atmospheric CO₂. The latitudinal gradient in the ¹⁸O value of atmospheric CO₂ observed by Francey and Tans (1987), can be explained by the Farquhar et al. (1993) global model of C¹⁸O¹⁸O discrimination during photosynthetic gas exchange. Friedli et al. (1987) have also shown, in theory, that oxygen isotopic exchange with vegetation and soil should be important processes determining the ¹⁸O/¹⁰O ratio of atmospheric CO₂. Since the terrestrial biosphere has a different effect on the oxygen isotopic composition of atmospheric CO₂ than does CO₂ exchange with the oceans (Farquhar et al. 1993), long-term monitoring of changes in the oxygen isotopic composition of atmospheric CO₂ may help determine whether the ocean or the terrestrial biosphere is responsible for the current imbalance between sources and sinks of CO₂ in the global carbon budget (Sundquist 1993).

Acknowledgments

This study was funded by a grant to JRE from the Ecological Research Division, Office of Health and Environmental Research, US Department of Energy, and by grants to LBF from Carleton University and the Natural Sciences and Engineering Research Council of Canada. Thanks to Dr J. F. Bain for collecting and shipping the Senecio plants from Utah.

References

Manuscript received 12 July 1993, accepted 25 October 1993