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Abstract

C4 and CAM photosynthesis are evolutionarily derived from C; photosyn-
thesis. The morphological and biochemical modifications necessary to
achieve either Cy or CAM photosynthesis are thought to have independently
arisen numerous times within different higher plant taxa. It is thought that
C, photosynthesis evolved in response to the low atmospheric CO, concen-
trations that arose sometime after the end of the Cretaceous. Low CO,
concentrations result in significant increases in photorespiration of C; plants,
reducing productivity; both C5-C; intermediate and C, plants exhibit reduced
photorespiration rates. In contrast, it may be argued that CAM arose either
in response to selection of increased water-use efficiency or for increased
carbon gain. Globally, all three pathways are widely distributed today, with
a tendency toward ecological adaptation of Cy plants into warm, monsoonal
climates and CAM plants into water-limited habitats. In an anthropogenically
altered CO, environment, C; plants may lose their competitive advantage

over C; plants.
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INTRODUCTION'

Three photosynthetic pathways occur among higher plants. The most common
and most primitive of these is the C; pathway, or Calvin-Benson cycle, in
which the initial carboxylation reaction results in phosphoglyceric acid, a
three-carbon acid. The C, pathway, or Hatch-Slack cycle. is a more
evolutionarily recent photosynthetic pathway, in which the initial carboxyla-
tion reaction results in oxaloacetate, a four-carbon acid. The third photosyn-
thetic pathway, crassulacean acid metabolism (CAM), is biochemically
similar to the Cy pathway in that the initial carboxylation reaction results in
a four-carbon acid, but this pathway differs from that in C; plants in structural
features as well as in the temporal activity of the initial carboxylation reaction.
Climate has a profound effect on the performance of each pathway, and
consequently variations in environmental parameters result in different eco-
logical distributions of the three photosynthetic pathways, Here we explore
the evolution of photosynthetic pathways in response to climatic variation and
the ecological consequences of photosynthetic pathway variation on plant
performance as well as to community- and ecosystem-level dynamics.

PHOTOSYNTHETIC PATHWAYS
C3, C4, and CAM pathways

Carbon dioxide fixation in C; photosynthetic organisms is catalyzed by
ribulose-1,5-bisphosphate  carboxylase/oxygenase  (Rubisco). Normally
ribulose-1,5-bisphosphate (RuBP) is combined with atmospheric CO, by this
enzyme to produce two molecules of phosphoglycerate (PGA), a three-carbon
molecule. The products of the photosynthetic light reactions (ATP, NADPH)
are then used to further reduce PGA into a series of intermediate products in
the photosynthetic carbon reduction cycle (PCR), synthesizing reduced sugars
for further plant metabolism and producing RuBP to allow the PCR ¢ycle to
continue. Under present atmospheric conditions, Rubisco also catalyzes the
oxygenation of RuBP, in which O, combines with RuBP to produce one PGA
and one phosphoglycolate (143). Further metabolism of phosphoglycolate
results in the release of CO,. The oxygenation of RuBP and eventual release
of CO, is termed photorespiration, a process that reduces the overall efficiency
of net photosynthesis (143).

While an evolutionary trend exists among photosynthetic organisms for
increased specificity of the Rubisco carboxylation reaction, the oxygenation
reaction continues because of the susceptibility of RuBP-intermediates to react

'Abbreviations: CAM, crassulacean acid metubolism; BSC, bundle sheath cells; PCA.
photosynthetic carbon assimilation: PCR, photosynthetic carbon reduction
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with diatomic oxygen (2). The oxygenase reaction appears not to have any
useful function but is likely to be an inevitable consequence of the reaction
mechanism under aerobic conditions. Historically, as oxygen levels in the
atmosphere increased, photorespiration may have evolved as a mechanism to
process phosphoglycolate and recycle as much fixed carbon as possible. CO,
and O, are competitive substrates, but Rubisco has a much greater specificity
for CO, (2). CO; concentrations are reduced as it diffuses through the stomata
to photosynthetic cells. Under today’s atmospheric conditions (0.035% CO,,
21% Oy, and 78% N,), the CO, concentration in the chloroplasts of C; plants
is approximately 1000 times lower than that of (. This low CO4O; ratio
allows a significant amount of photorespiration to occur, reducing the overall
efficiency of net photosynthesis in C; plants by approximately one third.

In Cy plants. a simple change in expression of the C; cycle is used to
overcome the reduced photosynthetic efficiency associated with photorespi-
ration. Instead of allowing the C; photosynthesis cycle to occur in all
photosynthetic cells, the Cy cycle is limited to selected interior cells, typically
the bundle sheath cells (BSC). A layer of mesophyll cells surrounds these
bundle sheath cells. Within the mesophyll cells is phosphoenolpyruvate (PEP)
carboxylase, an enzyme that catalyzes the initial photosynthetic reaction. This
reaction involves phosphenolpyruvate and atmospheric CO, as substrates to
produce oxaloacetate, a four-carbon acid; hence the name Cy photosynthesis.
The C, acid diffuses from the mesophyll through plasmodesmata to the bundle
sheath cells, where the C, acid is decarboxylated. Since PEP carboxylase has
a higher affinity for its substrate and a greater maximum velocity than Rubisco,
the CO, concentration in the bundle sheath cells ends up being significantly
higher than that in either the mesophyll cells or the surrounding atmosphere.
The consequence is that PEP carboxylase effectively serves as a CO; pump.
concentrating CO, within the bundle sheath cells. This results in CO,
concentrations within the chloroplasts that are approximately 0.25-0.30%, an
order of magnitude higher than in C; plants. As a consequence, the Rubisco
reactions in C, plants take place in an atmosphere with a high CO,/0; ratio,
and photorespiration is effectively eliminated. Critical to the functioning of
the Cy cycle is a distinct spatial separation of the activities of Rubisco and
PEP carboxylase (Kranz anatomy)—such that with PEP carboxylase activity
located between atmospheric CO; and Rubisco, it provides a pump to raise
the CO, concentrations internally. Three biochemical enzymatic mechanisms
are used in C; plants to achieve C; acid decarboxylation in the BSC -
NADP-malic enzyme (NADP-me), NAD malic enzyme (NAD-me), and PEP
carboxykinase (PEP-ck). The utilization of the alternative decarboxylases is
expressed in conservative patterns across phylogenies (44, 69).

CAM photosynthesis involves the same CO»-concentrating mechanism as
in Cy photosynthesis (PEP carboxylase). However, rather than a spatial
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separation of the two carboxylation enzymes such as exists in C; photosyn-
thesis, there is a temporal separation of the two carboxylases in CAM, and
both reactions occur within the same cell, In contrast to Cy and C; plants, an
inverted diurnal pattern of stomatal opening occurs in CAM plants. Stomata
open during the evening, and atmospheric CO; is fixed as a C, acid (malate),
which is then stored within the vacuole of the photosynthetic cell. During the
following day, stomata remain closed, and malate is decarboxylated to release
CO;. The CO, concentration within the cell remains high as CO; cannot
diffuse out through the closed stomata. As a result, Rubisco once again
operates within a high CO5/O, environment, and photorespiration is elimi-
nated. Thus, in CAM plants a temporal separation of the two carboxylase
reactions occurs with Rubisco activity within the cell during the day and PEP
carboxylase activity during the night.

The analysis of carbon isotopic ratio (3''C) of organic plant material is a
powerful tool for distinguishing among photosynthetic pathways (55). Since
the initial photosynthetic carboxylation reactions (PEP carboxylase in C; and
CAM plants or Rubisco in Cy plants) discriminate differentially against °C,
the isotopic composition of plant materials has proved to be a useful means
of determining photosynthetic pathway differences among species and for
addressing trophic-level interactions at the ecological level. C; plants typically
have a 8C value of —13%c and C; plants a value of —27%. Further details
of the biochemical and structural aspects of photosynthetic pathway variation
appear in several recent reviews (55, 70, 92, 107, 143, 188).

Functional Consequences of Photosynthetic Pathway
Differences

LIGHT-USE EFFICIENCY  The operation of the C, cycle requires two additional
ATP to reduce a CO, molecule, with the additional ATP associated with the
regeneration of phosphoenolpyruvate from pyruvate. Based on this, the
quantum yield of photosynthesis or light-use efficiency (mol CO, fixed per
mol photon absorbed) should be lower in C, plants than in C; plants (46, 47,
96). However, in today’s environment this is observed only at leaf tempera-
tures below 25-30°C. This is because photorespiration in C; plants increases
with temperature, resulting in a continual decrease in light-use efficiency as
leaf temperatures increase. Since photorespiration does not occur in either C
or CAM plants, light-use efficiency remains constant as temperatures increase
(46, 47, 83). Within natural canopies, leaf area development or overstory
development is sufficiently high that light-use efficiency differences between
C;, C4 and CAM plants can play a role in determining overall rates of
productivity.

Light-use efficiency of C; plants will also be influenced by atmospheric
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CO, levels (46,47, 83), since photorespiration is directly related to the CO /O,
ratio. Over a range of 150-350 pL L' CO, (= 0.015-0.035%), overall
light-use efficiency will vary three-fold in C; plants. As is discussed further
below, these atmospheric CO, concentrations are well within the known
modern range of values (between glacial maxima 18,000 years ago and today’s
environment) and are likely to have had a significant effect on plant
productivity and the competitive interactions between C; and Cy plants.

WATER-USE EFFICIENCY The leafl epidermis imposes a diffusional barrier
between the outside atmosphere and the chloroplast where photosynthesis is
occurring. The stomata can be thought of as pores through this barrier,
restricting both water vapor loss from the leaf and CO, diffusion into the leaf.
One consequence of the CO,-concentrating mechanism in C4 plants, however,
is that the photosynthetic rate is largely independent of CO; concentration
inside the leaf (117, 119). This implies that while changes in the degree of
stomatal opening play a major role in affecting inward CO, diffusion, and
thus photosynthetic rates in Cy plants, they exert little influence on photosyn-
thetic rates in C, plants over a broad range of stomatal opening. Yet in both
C; and C, plants, rates of transpirational water loss are directly proportional
to the degree of stomatal opening. The consequence is that water-use
efficiency (the ratio of photosynthesis to transpirational water loss) is higher
in C4 plants than it is in C; plants. In effect, at equivalent rates of water loss,
a Cy leaf is expected to photosynthesize more than an adjacent Cy leaf
operating under the same set of environmental conditions.

Water-use efficiency, measured instantancously at the leaf level or long-
term under single-pot or field conditions, is always greater in Cy plants than
in C; plants. On an absolute scale, Cy plants produce one gram of biomass
for every 250-350 grams of water transpired. whereas in C; plants, this ratio
is one gram of biomass produced for every 650-800 grams of water transpired
(154). CAM plants exhibit even higher water-use efficiencies, because stomata
open only at night, when the evaporative water loss gradients are less than
during the day. Higher water-use efficiency may allow a decreased expendi-
ture of water for a given amount of photosynthetic carbon gain. Under
circumstances of limited soil moisture or where factors such as salinity may
limit the capacity of a plant to extract water from the soil. an enhanced
water-use efficiency may result in a competitive advantage.

NITROGEN-USE EFFICIENCY  Rubisco represents a significant nitrogen invest-
ment, typically accounting for 25-30% of the total nitrogen in the leaf of C;
plants (53). C4 plants contain three to six times less Rubisco than Cj plants
(84, 139), and overall leaf nitrogen content is lower in C, plants (120-180
mmol N m™) than in C; plants (200-260 mmol N m 2) (18, 137). Yet G,
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plants exhibit equivalent or higher maximum photosynthetic rates than C,
plants (43, 117, 119). Thus, C4 plants are able to achieve higher nitrogen-use
efficiencies (ratio of photosynthetic rate to nitrogen investment in the leaf)
than are C; plants (18, 19, 137, 138, 140. 186). Higher nitrogen-use efficiency
may allow the plant the opportunity to allocate more nitrogen to the production
of those structures associated with the increased capture of the resources that
most limit overall plant growth. For instance, in soils that are nutrient
deficient, allocating that nitrogen to increased root production would increase
plant growth and presumably competitive ability.

SELECTIVE PRESSURES AND EVOLUTION OF
PHOTOSYNTHETIC PATHWAY VARIATION

CO2, 02, and Aridity as Selective Pressures for
Photosynthetic Pathway Variation

If the C; cycle is the primitive or ancestral photosynthetic pathway and both
the Cy cyele and CAM are evolutionarily more recent pathways, what selective
factors are likely to have contributed to their evolution? To answer that
question a logical starting point is to ask under what environmental conditions
do plants with these derived pathways thrive today? C; and CAM plants are
most common in hot, arid climates (discussed in greater detail below)—en-
vironmental conditions that have existed since plants invaded land in the Upper
Silurian. The extent of global arid zone development will be a function of the
size of continental land masses, and GCM modeling studies indicate that arid
regions have been common for at least the last 250 million years (7, 38). A
second climatic factor associated with the distribution of many C,; and CAM
plants is the summer monsoon. Conditions favoring the development of
seasonal monsoonal air flows are likely to have always existed in subtropical
and tropical land-sea interfaces. Yet Asian summer monsoons may have
intensified only recently, following the extensive development of the Hima-
layas and Tibetan Plateau (33, 128).

Atmospheric carbon dioxide levels in the Phanerozoic are thought to have
been substantially lower than at the time photosynthesis first appeared in
primitive photosynthetic bacteria. Based on geochemical carbon balance
models (11, 31, 32), estimates are that the atmospheric CO, concentration
during the Triassic, Jurassic, and Cretaceous may have been four to eight
times greater than today. These models indicate that atmospheric CO; levels
dropped after the Cretaceous from levels of 1400 to 2800 pl. L' to values
below 1000 pL L™" in the Eocene, Miocene, and Pliocene. Over the past
160,000 years, direct measurements (6) of the atmospheric air trapped as
bubbles in ice cores reveal that CO; levels have remained low, fluctuating
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between 180 and 280 pL L' during glacial and interglacial periods,
respectively.

Two factors have contributed to decreasing atmospheric CO, levels over
geological time: the burying of erganic matter as coals, oils, and peats, and
silicate-rock weathering. The silicate-rock weathering-calcite reactions for
recently exposed rock can be summarized as:

CaSiO3; + CO:; — CaCOs + Si0»

Over geological time, this process has been a major factor in the reduction
of atmospheric CO, levels, resulting in the burial of carbon dioxide as
carbonates in deep ocean sediments. Raymo & Ruddiman (132) suggested
that increased weathering rates since the Cretaceous have significantly reduced
atmospheric CO, levels. Increased global weathering has been associated with
the collision of the Indian subcontinent with Asia and the lifting of the Tibetan
Plateau, which exposed new, unweathered silicate rocks. The calcite formed
in these reactions is transported to the ocean floor, where, over time, it is
subducted with the movement of the continental plates. Sediment flows
associated with erosion of the Himalayas and Tibetan Plateau are high and
account for the primary global input into the oceans. Thus, collision of the
Indian subcontinent with Asia and the associated mountain building may have
been of sufficient magnitude to induce a global decrease in atmospheric CO,
levels that could ultimately have been the selective foree for a modification
on the basic mechanism of photosynthesis in land plants (e.g. evolution of
C, photosynthesis).

At the same time, atmospheric oxygen levels appear to have fluctuated little
(12). Therefore, the geological trend has been one of continual decreases in
atmospheric CO; levels as well as continual decreases in the CO~+O, ratio.
Both of these factors have a negative impact on C; photosynthesis—partly
because of a decreased CO, diffusion gradient and partly because of increased
photorespiration rates. It has been hypothesized that some time after the
Cretaceous, atmospheric CO, levels and the COyO; ratio had decreased
sufficiently to favor the evolution of C, photosynthesis (48). Warm temper-
atures alone in the past may not have been sufficient to favor the evolution
of C,. but the reduction in CO; may have been the critical factor.

Geological Evidence of Photosynthetic Pathway Variation

The scant fossil record of Cy plants sheds little light on the origins of Cy4
photosynthesis. The oldest known fossil evidence of Cy plants has been dated
to the late Miocene, an epoch between 5 and 7 million years ago (106, 162).
The oldest soil carbonate data indicating the presence of the C; pathway also
dates to this age (33, 34, 128), suggesting that C; photosynthesis appeared
in different global regions at approximately the same time.




418 EHLERINGER & MONSON

Recent studies have used soil carbonate carbon-isotope composition as a
means to reconstruct historical changes in the expansive grassland biomes of
Pakistan and East Africa (32, 128). A notable result from these studies is the
striking shift in carbon-isotope signature during the Miocene, indicating rapid
ecosystem-level increases in the proportion of C4 grasses (34). Reductions in
atmospheric CO, concentrations during the Miocene coupled with the warm
climates of these subtropical latitudes would result in substantial increases in
photorespiration and reductions in the carboxylation efficiency of C; plants.
In such an environment, plants that utilize the C; pathway. with their
inherently higher carboxylation efficiency, would exhibit obvious advantages
compared to Ci plants (48). Climate changes such as the evolution of the
Asian monsoons (128), in addition to those of atmospheric CO, concentration,
may have played a role in triggering the Cy to C, shifts. Measurements of
oxygen-isotope ratios in the same carbonate samples provided evidence of a
Miocene climate shift toward increased summer rains, coincident with the Cy
to Cy shift and the elevation of the Himalayas (128). Given the greater growth
potential for C; grasses relative to C; grasses when grown at warm
temperatures and low CO, concentration, increased rain during the warm
season could have triggered an increased representation of Cy species in these
grassland communities. In a separate study. the oxygen-isotope signal from
East African carbonates revealed a shift toward a warmer, drier climate
approximately 0.1 million years before the apparent shift from Cy-dominated
grasslands to C;-dominated grasslands (32), In this case, the higher water-use
efficiency expressed by C, plants may have provided them with a competitive
advantage in a warmer, drier climate, shifting the community balance toward
the C, extreme.

Fossil evidence of CAM tissue has not been discovered. The oldest material
of definitive CAM origins comes from 40.000 year old pack rat middens in
the southwestern United States (170). Based on arguments of facilitation—the
apparent ease with which CAM has developed from other metabolic processes
(e.g. pH balance)—as well as the expression of CAM in such a broad diversity
of taxa, Griffiths (60) concluded that the evolution of CAM predated the C,
pathway. CAM may date back to the Cretaceous, but based on its presence
in ancient groups such as isoetids and possibly cycads (e.g. Welwitschia), it
could date to the Triassic (60).

Evolution of Structure/Function Associations in C4 and CAM
Plants

Evolution of the distinctive C; architecture, wherein PCR tissue lies at the
innermost extreme of the leaf’s carbon assimilation tissue, can be explained
as the most efficient arrangement for directional carbon flow through the
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sequential C; and C, cycles from the atmosphere to the vascular cells. The
intimate association of PCR cells with the leaf’s vascular tissue would ensure
efficient transport of photosynthate to various nonassimilatory sinks of the
plant, and the close proximity of the mesophyll cell layer (functionally
described as the photosynthetic carbon assimilation layer, PCA) to the
atmosphere ensures the effective assimilation of atmospheric CO,. Addition-
ally, due to the unique “wreathed” or radial architecture of most C; leaves,
the PCR cells lie at the inner convergence of numerous PCA cells, This pattern
provides for a “funneling” of CO; to the photosynthetic reduction cycle and
facilitates the high CO, concentrations that are achieved in the PCR cells.
Such explanations are easily accepted because they fit so comfortably within
the established structure/function design of C; photosynthesis. However,
recent studies with the so-called C4-C, intermediate species suggest that in
some cases the unique architecture of Cy leaves evolved in response to the
photorespiratory constraints imposed on the C; photosynthetic system, not the
photosynthetic constraints imposed by the requisite coordination of carbon
transport between the Cy and C; cycles (92, 98).

Photorespiratory CO, loss in C3-Cy intermediate leaves is reduced, com-
pared to Ci leaves, because of unigue ultrastructural and biochemical
partitioning patterns that appear to have been derived from the ancestral Cy
system (94). Although the bundle-sheath cells of C; plants may possess
mitochondria and occasionally chloroplasts, those of Cs-C, intermediate
species have greater numbers of these organelles with a centripetal organiza-
tion (20). Often, the organelles are arranged such that mitochondria lie along
the innermost tangential wall, interior to the chloroplasts (20). This provides
a diffusive situation in which CO; that is released from the mitochondria
during the glycine decarboxylation of photorespiration is effectively
reassimilated by chloroplasts before it escapes from the leaf. Brown &
Hattersley (20) have demonstrated a correlation between the percentags of a
leaf’s photorespiratory organelles (mitochondria, peroxisomes, and chloro-
plasts) contained in the bundle sheath of C;, Cy, and C+Cy species and the
CO, compensation point, an index of photorespiratory CO5 loss. Thus, an
initial step in the evolution of C; metabolism includes the increased provi-
sioning of bundle sheath cells with photorespiratory organelles and their
involvement in recycling photorespired CO, before it diffuses from the leaf
(94). In C+-C, intermediate species of the genera Moricandia, Panicum,
Mollugo, and Flaveria, the increased provisioning of bundle sheath cells with
photorespiratory organelles is accompanied by the differential expression of
glycine decarboxylase, the mitochondrial enzyme responsible for the release
of photorespiratory CO; (73). Activity of this enzyme is found only in the
bundle-sheath cells (73, 103, 131). Glycine decarboxylase is composed of
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four different subunits, with only one being isolated to the bundle-sheath cells
and missing from the mesophyll cells (the P subunit, see 30). Because glycine
decarboxylase is restricted to the bundle-sheath cells, all photorespired CO,
15 released from the most interior part of the leaf, resulting in almost certain
photosynthetic refixation before diffusing past the bundle-sheath and meso-
phyll chloroplasts.

The differential activity of glycine decarboxylase in bundle-sheath and
mesophyll cells of C;-C, intermediate species represents the first evolutionary
chapter in an otherwise lengthy story of differential Cy and C, cycle
expression. What mechanism has evolved to depress the expression of the
P-subunit of glycine decarboxylase in the mesophyll tissue, yet permit it in
bundle-sheath cells? One possibility 1s the diffusible inhibitor of gene
expression that has been invoked for the control of light-regulated genes
involving phytochrome or one of the blue-light receptors (105). This inhibitor
has been implicated as a possible control over the differential expression of
Rubisco in Cy plants (107). Extending this model to C+C4 intermediate
species, a diffusible substance would be transported laterally from cells of the
vascular system to mesophyll cells. where it would interact with a mesophyll-
specific factor to repress transcription or translation of the P-subunit of glycine
decarboxylase. Once a mechanmism has evolved to control the differential
expression of glycine decarboxylase, it could have developed further as a
control over the repression of the Rubisco gene, and the promotion of the
PEP carboxylase gene in the mesophyll cells of fully-expressed C; plants.
Langdale and coworkers have demonstrated that the differential expression of
the principal C; and C; enzymes among PCA and PCR cells is due to
regulation at the level of transcription (85, 107).

Several aspects of CAM appear to have evolved as minor modifications of
processes in ancestral Cy species. For example, one of the key aspects of
CAM is the temporal storage of organic acids within the cell vacuole. The
synthesis and storage of organic acids is an integral part of cytoplasmic pH
and osmotic balance in all terrestrial plants. irrespective of photosynthetic
pathway (see 147, 129). Such processes have particular importance to nutrient
assimilation and stomatal guard cell dynamics. Some past evolutionary
scenarios for CAM have suggested modifications in the expression of guard
cell metabolism as a principal event (37, 155). Griffiths (59), however,
provides a compelling argument against restricting the evolutionary origins
of CAM to one specific aspect of organic acid metabolism in G plants.
Whatever the precise modifications, the ancestors to CAM clearly were
already predisposed to the synthesis and storage of organic acids. Elaboration
of these processes, as an evolutionary pattern, would have been required as
nighttime CO, assimilation gradually took on greater importance to the diurnal
carbon budget of CAM plants.
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Adaptation and Transitional Stages of C4 and CAM Evolution

Several studies have examined the gas-exchange traits of C;C intermediate
species, with the aim of elucidating those environmental situations in which
an advantage is expressed over C; species (13, 71, 92, 93, 95, 141). These
studies have made it obvious that any advantages of C;-Cy intermediate species
are subtle in most environmental situations. Two situations in which they
appear to exhibit some advantage are reduced intercellular COsconcentrations
(71, 92) and elevated leaf temperatures (95, 141). By taking advantage of the
madified bundle sheath layer, with its recycling of photorespired CO,, C5-Cy
intermediate species can realize a significant increase in CO, assimilation rate
per unit leaf area, where photorespiration is increased, relative to photosyn-
thesis (141). Additionally, because the CO, source for bundle-sheath assim-
ilation is internal, the increased assimilation can be realized with higher water
and nitrogen-use efficiencies, compared to Cy species (141).

CAM is expressed in plants native to many ecological situations, e.g. in
primitive aquatic plants (e.g. Isoetes), the chloroplast-containing, aerial roots
of orchids, primitive, stomata-less bog plants (e.g. Stylites), tropical epiphytes
(e.g. Bromeliads). and desert succulents (e.g. Cactaceae). The common
denominator in all cases is that ambient CO, during the day is not readily
available or is available only at extremely high costs (e.g. low daytime aquatic
CO; concentrations and low diffusion coefficient for COs in water, low tissue
CO; concentrations due to lack of stomata, or high water costs as with desert
succulents). An initial evolutionary step when exposed to such difficulties in
obtaining ambient CO, appears to be nighttime assimilation of respired COs,
as a supplement to daytime CO, uptake (59, 92, 156, 167). Such recycling
of respired CO; would enhance the plant’s carbon balance by reducing
nighttime respiratory losses. Additionally, during those periods when ambient
CO; was acutely scarce, recycling of respired CO, would provide the plant
with a means of ensuring adequate carbohvdrate pools as substrate for
maintenance respiration. The latter arguments focus on carbon balance as the
principal advantage driving the evolution of CAM. Martin et al (89) have
provided compelling evidence that CAM-cycling also leads to significant
advantages in terms of water-use efficiency, and this has been acknowledged
as a possible additional factor driving the evolution of CAM (60, 92),

PHYLOGENY AND PHOTOSYNTHETIC PATHWAY
DISTRIBUTION

Multiple Origins and Common Patterns

Numerous past studies have superimposed the distribution of C, photosynthe-
sis and CAM upon general phylogenetic schemes for the Angiospermae (e.g.
48, 81, 155). All studies come to the same conclusions: (i) both C; photo-



422 EHLERINGER & MONSON

synthesis and CAM are derived conditions, based upon their being confined
to more advanced families, and (ii) both C,; photosynthesis and CAM have
evolved independently several times within the Angiospermae and may have
evolved independently among several genera as well (54, 81, 147, 155). When
one narrows consideration of phylogenetic relationships to specific families,
additional evolutionary insight is possible. Below. we present six case studies
of C; and CAM evolutionary patterns to illustrate some of the diversity and
similarity that has occurred within the plant kingdom as a whole.

Patterns Among Key Families
g A€

POACEAE Most phylogenetic evidence suggests that the presence of C,
photosynthesis in the monocotyledonous Poaceae and Cyperaceae is due to
independent evolutionary events and that within the Poaceae, Cy photosyn-
thesis may have independently evolved at least three times (70). The Poaceae
share closer affinities to six small, C; southern hemisphere families (Restion-
aceae. Centrolepidaceae, Anarthriaceae, Ecdeiocoleaceae. Flagellariaceae,
and Joinvillacceae) than to the Cyperaceae: the closest sister groups to the
Poaceae appear to be the Restionaceae and the Joinvillaeceae (both Cy) (24).
A phylogeny of the Poaceae now recognizes five subfamilies, two of which
contain only C; species (Bambusoideae and Pooideae) (177). The other three
include the Chloroideae, which is C; except for one species, Eragrostis walteri
(51), the Panicoideas, which has both C; and C4 species, and the
Arundinoideae. which is predominantly C; but possesses five C; genera.

CYPERACEAE  With respect to C; Cyperaceae, two groups are generally
recognized, the chlorocyperoid and fimbristyloid types. Both groups exhibit
the “classical” NADP-type of Cj ultrastructure with agranal, centrifugal
chloroplasts (25), These groups have been given subfamilial status by Raynal
(133). who presented evidence of two independent evolutions of Cy photo-
synthesis. However, Brown (22) proposed a phylogeny based on anatomical
patterns, with the chlorocyperoid group evolving from the fimbristyloid group.
The fimbristyloid group is characterized by three sheaths—an inner PCR
sheath, a middle mestome sheath, and an outer parenchymatous sheath. The
inner PCR sheath appears to be homologous with phloem and xylem
parenchyma (22. 25). The chlorocyperoid group is characterized by only two
sheaths. Brown (22) suggested that the chlorocyperoid group evolved from
the more primitive fimbristyloid group through elimination of the outermost
parenchyma sheath. Thus, the evolutionary pattern for Cy in the Cyperaceae
is confused by conflicting interpretations

CHENOPODIACEAE (ATRIPLEX)  The most widely accepted phylogeny of Atri-
plex is that of Hall & Clements (64), which is based on embryo position in
the seed. Using this criterion, two subgenera have been distinguished, Euarri-
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plex and Obione. Primitive members of each subgenus are Ci. In Obione,
more advanced species are entirely Cy. In Euwarriplex. advanced species
include both C; and C; photosynthetic pathways. Thus. there is eviderce for
at least two independent evolutions of C; photosynthesis in this genus, Cy
Atriplex species exhibit the NAD-malic enzyme type of C; decarboxylation.
The origins of Arriplex probably lie in central Asia, where at least 70% of
the species demonstrate C; photosynthesis (116). C, photosynthesis appears
to have evolved early in this genus, at least with respect to its radiation to
the other continents. This is based on the observation that 85-100% of the
species in Australia, South America, North America, and Central America
are Cy (116). In fact, the early evolution of C4 photosynthesis in this genus
likely accelerated phylogenetic diversification. Rapid diversification was
promoted by its ability to invade marginal habitats, especially those charac-
terized as arid or saline (116). The presence of C; photosynthesis would
certainly have provided for more water-use efficient CO, assimilation, and
thus enhanced growth, in such habitats.

POLYPODIACEAE CAM has been confirmed in several species of the fern
genus Pyrrosia (184, 187). Plants of this genus are epiphytic and widely
distributed within the Palacotropics (Africa, Asia, and Australia). Using recent
cladistic analyses of this genus with knowledge of CAM distribution, Griffiths
(59) concluded that CAM exists in three separate monophyletic, relatively
advanced groups. It is not yet clear whether these groups obtained CAM
through independent lineages, as the potential exists for considerable floristic
mixing during past continental movements. A comparison of phylogeny with
geographic distribution in this genus suggests an origin in Africa, with an
early split when Africa separated from Gondwana and Australia separated
from India. The primitive life-form in this genus appears to be poikilohydric
and native to seasonally dry habitats. There is evidence that derived species
include both the poikilohydric and succulent epiphytic life-forms, with CAM
evolving within the succulent lineages (59). Kluge et al (80) have suggested
that the apparent lack of drought tolerance in CAM species of Pyrossia reflects
homology with C; ancestors from rain forest habitats, If so, this suggests an
early ecological dichotomy in this group, with the African/Central Asian
groups diversifying within seasonally arid habitats, retaining the poikilohydric
form, and the Australasian groups diversifying within more mesic rain forest
habitats, taking on the succulent, CAM form. There is evidence that one
species within the CAM group, Pyrossia rupestris, exhibits C; photosynthesis
(184). Griffiths (59) raised the possibility of this species representing an
evolutionary reversal from CAM back to C;.

BROMELIACEAE ~ Within this family of neotropical origins, all three subfamil-
ies contain CAM species (148). It appears as though CAM has evolved
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independently at least twice in this family. and possibly more than once within
the single genus Tillandsia (58, 148). Cy and CAM species occur in both
terrestrial and epiphytic groups of this family (148). Within the subfamily
Bromelioideae, there is evidence of some loss of CAM and reversal to the
C, state (148).

The Bromeliaceae provide unique opportunities to examine the relationship
of CAM evolution to appearance of the epiphytic growth habit (90, 91, 148).
Considering epiphytic species from all angiosperm families, over 13,000
species may exist with CAM (59)! With such estimates, CAM is obviously
much more frequent within the epiphytic growth form than is the arid.
terrestrial growth form typically associated with CAM (59, 110, 184).

CRASSULACEAE  Teeri (155, 156) has provided evidence through 3" C anal-
yses, combined with cytogenetic and morphologic features, that CAM has
evolved twice in trans-Mexican Crassulacean species. North American
Crassulaceae tend to exhibit only CAM-cycling (Cy uptake of atmospheric
CO; with the capacity to recycle respired CO» at night). Thus, in this family,
fully expressed CAM has evolved only in the more southerly taxa, presumably
because of the increased frequency of radiation into habitats of extremely high
aridity. All of the species so far examined in this family have at least some
capacity for nighttime accumulation of organic acids (whether it be through
CAM-cycling or fully expressed CAM), except for two, Crassula erecta and
Sedum ternatum. Teeri (156) offered the suggestion that the latter species
represents the product of evolutionary reversal. from CAM or CAM-cycling
to fully expressed C;. In support of this. some of the genera in this family
(e.g. Dudleya and Villadia,) have been classified, on the basis of 8'°C, as
representing intermediate steps in the evolution of fully expressed CAM from
CAM-cycling (156). In a survey of Semipervivoideae (Crassulaceae) from
Teneriffe (Canary Islands), Tenhunen et al (161) provided evidence from a
single subfamily of adaptive radiation from ancestral, C succulents that occur
in mesic, cloud forest environments that they produce a variety of CAM taxa
occupying relatively arid habitats.

ECOLOGICAL ASPECTS OF PHOTOSYNTHETIC
PATHWAY VARIATION

Variation in Relation to Abiotic Factors

C3 AND C4 DISTRIBUTIONS ALONG GEOGRAPHIC AND ENVIRONMENTAL GRADI-
ENTS One of the more fruitful approaches to understanding the ecological
significance of photosynthetic pathway variation has come through correlative
analyses of pathway abundance and specific environmental factors. In
pioneering work, Teeri & Stowe (158) found that the percent C, grass
representation in local floras was most highly correlated with the average July
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minimum temperature. Since this work, numerous studies taking a similar
approach have verified some aspect of growing season temperature as the
strongest correlate with C, representation, especially when considered over
fairly broad geographic scales (17, 30, 35, 52, 66, 68, 87, 114, 136, 153,
173, 175, 178). Each of these distribution patterns is mechanistically
consistent with previous evidence that increased photorespiration and de-
creased light-use efficiency at elevated temperatures play a significant role in
influencing plant carbon balance. Modeling the consequences of light-use
efficiency differences on predicted productivity of C; and C; canopies,
Ehleringer (45) predicted distribution patterns that were qualitatively similar
to the above observations.

C, dicots do not follow the climate relationships that have been reported
for Cy monocots. Stowe & Teeri (152) found that the representation of Cy
dicot species in local floras of North America was more highly correlated
with indices of aridity than indices solely describing temperature. However,
even C; species in those families that contained C, dicots exhibited significant
correlations with aridity. suggesting a phylogenetic component, independent
of photosynthetic pathway type. Assuming that C; photosynthesis was
ancestral in these families, these results suggest a pattern of C; evolution in
those North American dicot taxa predisposed to growth in arid habitats. Okuda
& Furukawa (115) found that Japanese C, dicots did not exhibit numerical
decreases as latitude increases, in contrast to the trend for C; monocots. In
C4 dicots, the advantages of C, photosynthesis appear to have facilitated
diversification and expansion into warm areas of progressively greater aridity.
In C; monocots, the advantages of Cy photosynthesis appear to have facilitated
diversification and expansion into warm areas with relatively high amounts
of summer precipitation.

At more local scales, summer precipitation takes on increased importance,
reflecting the influence of moisture on C, distribution within a relatively
homogenous temperature regime (42, 69). Generally, C; species tend to
predominate in areas of lower precipitation or soil moisture (35. 174), Several
studies have emphasized that the evolution of a C;- versus C s-dominated flora
depends on the interaction between temperature and precipitation—i.e.
whether it is warm or cool during the season of highest moisture (68, 174,
175). In the arid regions of the western United States (144) and South Africa
(179), C; species predominate during the winter rainy season whereas Cj
plants predominate during the summer season. Along topographic moisture
gradients, C; and C, species tend to sort themselves along patterns similar to
those observed for broad geographic regions—C, species often occur at the
drier extreme ol the gradient, and C; species at the cooler, wetter extreme
(3. 11, 99, 166, 178, 189).

Well-defined crossovers in the relative dominance of C; versus Cy species
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in a local flora have been described along elevational gradients at equatorial
latitudes (35, 136, 166). Along the ascent of Mount Kenya, Tieszen et al
(165) observed a switch from a C,-dominated flora to a C;-dominated flora
at altitudes above 2300 m. This elevation was characterized by a mean annual
minimum temperature of 8°C (the mean minimum temperature at this elevation
is relatively constant year-round). Along elevational gradients in Hawaii and
Costa Rica, the crossover in CyC, grass representation occurred at different
elevations than in Kenya. but at similar mean minimum temperature ranges
(9—11°C) (35, 136). In a survey of Cy/C, distributions, Long (88) concluded
that Cy species do not occur in areas with mean summer temperature minima
below 8°C, although it should be noted that genera such as Echinochloa (125)
and Muhlenbergia (142) commonly occur at this lower temperature limit.
Even so, there is a marked convergence in the low temperature limits of Cy
distribution among widely different floras. These temperature-related dis-
tributional limits for C, plants are probably due to the evolutionary origins of
C, photosynthesis in floras of warm-temperature latitudes, rather than to any
inherent weaknesses in the design of the C; system (88).

In temperate latitudes of North America, C; and C; plants may occupy the
same habitat, with ecological divergence occurring across seasonal and
topographic gradients in temperature and moisture (17, 79, 97, 100, 104,
180, 181). In arid land regions of the southwestern deserts with bimodal
precipitation, seasonal differences in the activities of Cy and Cy plants are
pronounced. with C; grasses and herbs dominating the winter season and C,
the summer season (104, 144). In the mixed-grass prairie of South Dakota,
significant increases in the 5'"°C of bulk aboveground biomass occur during
midsummer compared to spring and fall (5, 113). These observations reflect
the increased abundance of C; biomass, relative to Cy biomass, during the
warmest part of the growing season and demonstrate a distinct difference in
the seasonality of Cy and C 4 grasses in this ecosystem. A similar divergence
in the timing of seasonal growth might be expected for the short-grass prairie
of North America, but recent measurements have indicated that although
phenologies differ for Cy and C; grasses in this ecosystem, there is no
difference in the timing of maximum seasonal growth (99).

VARIATION IN C; SUBTYPES IN RELATION TO ECOLOGICAL PATTERNS  Brown
(22) and Hattersley (66) predicted correlations between C, subtype and
climate. Recent correlative analyses have revealed that C; subtypes exhibit
systematic distribution patterns over broad ecological gradients (52, 69, 126,
174, 179). In the Cj,dominated grasslands of the South African/Namibian
region, NAD-me subtype species predominate at the more arid extremes
(representing 67% of the C; flora in the most arid districts), whereas
NADP-me species exhibit a striking sensitivity to increasing aridity (decreas-
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ing in proportional representation from 42% of the C; species in the wettest
districts, to 12% in the driest districts). The relationship of PEP-ck species
to climate was less distinct, but the species tended to be most abundant at the
median of the range. Hattersley (69) has provided unequivocal evidence that
NAD-me grass species in Australia are negatively correlated in abundance
with median annual rainfall, whereas both NADP-me and PEP-ck species
exhibit significant, positive correlations with precipitation.

It is possible that the correlations noted above are the result of historical,
phylogenetic linkages between C; subtype and some unrelated factor of
drought tolerance. because there is no simple mechanistic linkage between
C,4 subtype and drought tolerance. Past studies have demonstrated definitive
differences among the subtypes with respect to CO; leakage from the PCR
tissue (47, 67), which is likely to affect growth when water is available, but
not necessarily performance when exposed to drought. The leakage of CO,
from PCR tissue is almost certain to influence CO, partial pressures in the
intercellular spaces surrounding PCA tissue, and this may, in turn, influence
stomatal conductance and transpiration rate. Whatever the mechanism under-
lying these recently uncovered correlations, there is certain to be future interest
in their implications for phytogeographical studies of global grasslands and
applied aspects of grassland management (see 69).

CAM AND ARIDITY ~ Over broad geographical scales, the distribution of CAM
is clearly most highly influenced by aridity (61, 101, 102, 149, 159, 179,
182, 184). The CAM-aridity distribution falls into two primary groupings:
succulents from the arid and semi-arid regions, and epiphytes from tropical
and subtropical regions. With limited exceptions (151, 168), CAM plants are
succulents, and the development of CAM is a function of leaf thickness (151,
184). Species of aridland Cactaceae and Crassulaceae in North America are
most abundant in regions with high indices of aridity (159); along gradients
of increasing aridity in North America, CAM increases in frequency (50, 49,
101). The distributional limits of many CAM species are determined by
tolerance to low-temperature extremes (e.g. 111). though once again this is
probably due to their evolutionary origins in warm climates and not to any
weakness of CAM per se. In CAM plants from cold environments, the period
of maximum productivity occurs during the summer, not the winter as in most
desert CAM succulents (108, 109, 110).

WATER-USE EFFICIENCY AND PLANT DISTRIBUTION While the increased
water-use efficiency of Cy plants over C; plants has been considered to be of
adaptive value, it is difficult to distinguish the effects of high temperature
from water use on plant performance. High leaf temperature results in an
increased evaporative gradient for both Cy and C, plants, but when combined
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with the increased photorespiration rate of Cy plants, higher leaf temperature
results in a greater reduction in water-use efficiency of the Cy plants. The
advantages to C, plants conferred by a lack of photorespiration are directly
convertible to a water-use efficiency advantage, but is there evidence that
water conservation is the important factor? Since temporal activities of Cs
and C4 plants are often seasonally displaced, equivalent, direct comparisons
among similar life forms are limited, Robichaux & Pearcy (135) could not
detect any advantage of increased water-use efficiency in a comparison of Cy
and C; shrub species along a moisture gradient in Hawaii. Knapp (82)
suggested that the higher water-use efficiency of C, plants and the greater
capacity to conserve water while responding to light-level fluctuations places
C, plants at a competitive advantage under grassland situations, especially
when drought may be an intermittent factor. Saline environments also impose
a stress on plants, resulting in partial stomatal closure, and one in which
water-use efficiency may be important for long-term survival. As soil salinities
increase in tidal marshes or inland sinks, G plants increase water-use
efficiency. but their values are not as high as those of the C, plants that replace
them on more saline sites (23, 63, 76, 56). In cold deserts, productivity of
C;and C, shrubs may not differ significantly, but C, plants achieve equivalent
productivity on more saline soils losing less transpirational water (23). Over
longer time scales, water-use efficiency of Cs plants is sensitive to decreased
global CO, levels and is much greater today than it was during glacial periods
when CO; concentrations were lower (123, 124), implying that. even with a
reduced water-use efficiency, C; plants were at a competitive disadvantage
under glacial-period atmospheric CO; levels.

Changes in photosynthetic pathway are a means of increasing water-use
efficiency and extending activity into drought periods. Common among the
leaf succulents of the arid regions of North America and Africa are plants
that reversibly switch between C; and CAM in response to water stress (65,
77, 157, 169, 183). The additional carbon gained through CAM activities
increases reproductive output under conditions of drought and salinity stress
(185). An interesting variation on this theme are African succulents that have
drought-deciduous C; leaves and evergreen CAM stems (86, 176). Shifts
between C; and C; photosynthesis within a plant are not known, with the
exception of the unique aquatic plant Eleocharis vivipara (172).

Competitive Interactions Among C3 and C4 Plants

As discussed above, comparative carbon balance studies of C; and C 4 species
within an ecosystem often show a seasonal displacement of activities, which
tends to reduce competitive interactions. However, for plants growing in saline
or disturbed environments, the growing periods coincide, and there are
opportunities for comparing competitive abilities among C; and C, plants.
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Differences in the temperature dependence of photosynthesis (14, 120) and
greater nitrogen-use efficiency (18 | 36, 43, 137) provide a competitive edge
to C, plants, but exceptions to this pattern may exist (42, 57). There appears
to be a competitive advantage to C; photosynthesis under limited water stress
(42, 118), unless that stress is so extreme that canopy closure does not occur
(120). While cool, shade situations should favor C; plants (45), differences
in the capacity to use intermittent sunflecks in gap situations could place C,
plants at a competitive advantage if sunfleck frequency is sufficiently high
(134, 150).

Gurevitch (62) observed that the C; grass Stipa neomexicana occupied dry
ridgetop sites in a semi-arid grassland of southern Arizona, whereas the lower,
wetter sites were dominated by C; grasses. This reversal of the typical pattern,
in which C; species typically dominate drier portions of the topography, is
due to the exceptional dryness of these ridgetop sites and the extreme drought
tolerance of S. neomexicana. Physiological features other than photosynthetic
type probably represent the principal determinant of extreme drought toler-
ance. While the C, pathway, in and of itself, does not confer a drought
tolerance, it does confer an advantage in terms of rapid growth during the hot
summers of this Arizona site, when rainfall reaches its monthly maximum,
Thus, at the lowland sites, C, grasses are better able to compete for the
midsummer moisture, restricting the C; species to those extreme sites that
lack C; competitors. This pattern makes clear, once again, that the temperature
during the rainy season is an important determinant of whether a local flora
18 Cs- or Cy-dominated. Cyand C, species will sort along temporal and spatial
environmental gradients according to their relative competitive advantages.
At the environmental extremes, however, success may depend more upon the
evolved traits of stress tolerance than on the greater resource-use efficiencies
that typify C, plants.

Given the sensitivity of light-use efficiency and photorespiration to low
atmospheric CO; levels, Cy plants should become better competitors in
elevated CO, environments (26, 190). Yet allocation patterns and competition
for other resources make the competitive outcome of Cy-C; interactions
difficult to predict (8, 10). Although reduced photorespiration favors C; plants
under elevated conditions, growth of Cy plants quickly becomes nitrogen-lim-
ited (39, 112), and the greater nitrogen-use efficiency of Cj plants may place
them at a competitive advantage (9).

Plant-Animal Interactions
DIFFERENTIAL HERBIVORY AMONG Cy/Cy PHOTOSYNTHETIC PATHWAY TYPES

Carbon isotope ratios (5'C) have been used to establish feeding preferences
of insects and large ungulates in various ecosystems (1, 15, 40, 163, 166).
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Since “you are what you eat, isotopically,” the proportion of C4/Cy plants in
an animal’s diet can be estimated by analysis of the 8'°C values of its tissues
(hair, teeth, muscle, bone, etc.) (163, 164). These data reveal that most
grazing species exhibit significant preference for one photosynthetic pathway
or the other.

Caswell et al (29) hypothesized that there were greater herbivory rates on
C; than on C, plants, because C, plants were less nutritious. The basic tenets
are that the bulk of leaf protein in Cy plants is protected within the thick cell
walls of the BSC, and leaves of C, plants contain less protein than those of
C4 plants. In support of their hypothesis. a number of studies have shown
feeding preferences for C; over C, plants (29, 72), a tendency for most of
protein in leaves of C, plants to be located within BSC (84), and evidence
that bundle sheath cells tend to pass undigested through an insect gut (27,
28). However, others have observed the opposite pattern (C; plants were
preferentially taken before Cy plants—16. 74, 145) or no clear preference
pattern (4. 121, 122). A more balanced approach might consider the possibility
of co-evolutionary relationships between plants and their herbivores, which
result in feeding preferences for plants with one photosynthetic pathway or
the other.

Several distinct patterns emerge from studies comparing C; versus Cj
feeding preferences. First, the hierarchy of feeding preferences tends to be
C; — NADP-me C; — NAD-me C; or the opposite (74, 75, 127, 171).
Second, there is a tendency for NAD-me Cy plants not to contain toxic
secondary compounds, whereas NADP-me and C; plants often contain
secondary metabolites known to deter herbivores. Third, there are anatomical
differences among C; plants: BSC of NAD-me C, are short and cubical,
whereas those of NADP-me C,; and C; are long and rectangular (21). Since
the BSC of all C, plants have thicker cell walls than do adjacent mesophyll
cells, the bundle sheath cells of NAD-me Cy plants have essentially “pro-
tected” the leaf protein within a BSC cell that is more difficult to crush than
have NADP-me C, plants. This is not the case for NADP-me C, plants, in
which there is both a greater photosynthetic protein content within mesophyll
cells (associated with producing malate as the transported Cy acid), and also
bundle sheath cells that have a higher surface to volume ratio and should be
therefore less difficult to crush. For the NADP-me C, plants (as well as for
C, plants), much of the leaf protein is “exposed,” contained within thin-walled
mseophyll cells, and not within the bundle sheath cells; toxic secondary
compounds may be necessary to reduce the likelihood of herbivory. Given
this scenario, it is reasonable to hypothesize that insects capable of detoxifying
secondary compounds may exhibit a preference for Cy and NADP-me Cy
plants, whereas those insects lacking this capability should exhibit a preference
for NAD-me C, plants.
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SOME CONCLUSIONS CONCERNING C4 AND CAM
EVOLUTIONARY PATTERNS

The high frequency with which C; photosynthesis has evolved must reflect
the existence of developmental and biochemical gene families with a
propensity for frequent mutation. The architecture of certain genetic regulatory
systems may predispose these systems to evolutionary change, providing for
the rapid evolution of novel morphological and biochemical patterns (41).
Though these patterns may, at first, be nonadaptive, in the case of C,
evolution, they may become subject to selection shortly after their appearance.
This hypothesis is based on the fact that the initial stages of C; evolution
appear to entail the coordinated development of bundle-sheath cell ultrastruc-
ture and differential expression of the enzyme glycine decarboxylase between
the bundle sheath cells and the mesophyll cells. The metabolic advantages of
this evolutionary sequence are clear in terms of reducing photorespiratory CO,
loss and improving net CO, assimilation rate in an environment of low
atmospheric CO,. Strong selection in favor of such traits would probably
occur with a combination of internal factors creating a high carbohydrate sink
strength and external factors creating a low carbohydrate source strength. This
combination might occur most frequently for plants with a genetic constitution
favoring rapid growth rates (high carbohydrate sink strength) in warm
environments with reduced CO, availability, where photorespiration is ex-
pressed at a high level (low carbohydrate source strength)—in other words,
in those conditions in which plant growth is likely to be carbon limited.
The frequency of independent evolution of CAM suggests that it too has
developed from gene families with a propensity for change. Like C,
photosynthesis, the initial evolutionary changes leading to CAM involve both
biochemical and ultrastructural changes. The biochemical changes involve
increases in the expression of PEP carboxylase activity as a means of recycling
respired CO; into malic acid. The ultrastructural changes involve elaboration
of vacuolar storage capacity as a means of accommodating increases in
nighttime synthesis of malic acid. The advantages of these evolutionary
changes, however, are still unclear. On the one hand, it could be argued that
the evolution of CAM occurred as a means of extending the period of carbon
assimilation in an environment where daytime CO, availability is low. Such
a case could be made for both aquatic environments (where daytime CO,
availability is limited by intense competition from C; phytoplankton) (78) and
arid, terrestrial environments (where daytime CO, availability is limited by
low stomatal conductances). With such an argument, the evolution of CAM
would best be classified as relieving carbon limitations to growth. Alterna-
tively, the argument could be made that CAM facilitates a respiratory
carbohydrate supply during particularly stressful periods for the maintenance
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of cellular structure and function, allowing for rapid recovery upon the
relaxation of stress. With the latter argument, the evolution of CAM would
best be classified as enhancing stress tolerance and recovery.

In an anthropogenically altered environment, the environmental situation
favoring the continued evolution of C, photosynthesis (low atmospheric CO)
is being rapidly eliminated. As atmospheric CO, levels continue to rise, the
selective value of Cy photosynthesis is therefore diminished. At some elevated
global CO, concentration in the not-too-distant future, it is likely that
photorespiration in C; plants likely will be effectively eliminated and light-use
efficiencies will be increased to the point that C, plants are no longer at a
competitive advantage over C; plants in any ecological situation.
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