Vegetation effects on the isotope composition of oxygen in atmospheric CO₂ Graham D. Farquhar*, Jon Lloyd*, John A. Taylor†, Lawrence B. Flanagan‡, James P. Syvertsen§, Kerry T. Hubick*, S. Chin Wong* & James R. Ehleringer|| - † Centre for Resource and Environmental Studies, Institute of Advanced Studies, Australian National University, Canberra, ACT 2601, Australia ‡ Department of Biology, Carleton University, 1125 Colonel By Drive, - Ottawa K1S 5B6, Ontario, Canada - § Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA - \parallel Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA THE ¹⁸O/¹⁶O ratio in atmospheric CO₂ is a signal dominated by CO₂ exchange with the terrestrial biosphere and it has considerable potential to resolve the current importance of the oceans and individual terrestrial biomes as net sinks for anthropogenic CO₂. Fractionation of the oxygen isotopes of CO₂ occurs in plants owing to differential diffusion of C¹⁸O¹⁶O and C¹⁶O₂ and to isotope effects in oxygen exchange with chloroplast water. Here we investigate the consequences of these effects for the global distribution of oxygen isotopes in CO₂. We predict that ¹⁸O isotopic exchange fluxes, especially between the atmosphere and terrestrial biosphere, are large, with considerable spatial variation. Near 70° N, where precipitation (and soil water) is most depleted in ¹⁸O, photosynthesis and respiration both deplete the atmospheric CO₂ of ¹⁸O. This provides an explanation for the depletion of ¹⁸O in atmospheric CO₂ at high northern latitudes¹. During terrestrial photosynthesis, heavier $C^{18}O^{16}O$ molecules diffuse into leaves more slowly than do the lighter $C^{16}O_2$. Further, within the chloroplasts, carbonic anhydrase catalyses the exchange of oxygen atoms between CO_2 and the water there. The $^{18}O/^{16}O$ ratio of chloroplast water is enriched compared with soil water because H_2 ^{18}O evaporates more slowly from leaves than does H_2 ^{16}O . Some of the CO_2 entering the chloroplast and exchanging oxygen atoms with chloroplast water is assimilated via photosynthesis, but some diffuses back into the atmosphere, the amount depending on the concentration of CO_2 in the chloroplast and on conductances to diffusion within and from the leaf. CO_2 molecules diffusing out of the leaf after exchanging oxygens are usually, but not always, enriched in ^{18}O compared to those in the ambient air. CO_2 released in respiration and decomposition is less enriched because it largely reflects CO_2 in equilibrium with unenriched soil water. The ¹⁸O composition of water at the sites of evaporation within leaves, $\delta_{\rm E}$, is enriched with respect to source (soil) water. Following the derivation for a free water surface², an equation for $\delta_{\rm E}$ can be presented³ $$\delta_{E} = \delta_{S} + \varepsilon_{k} + \varepsilon^{*} + (\delta_{v} - \delta_{S} - \varepsilon_{k}) \frac{e_{a}}{\rho_{c}}$$ (1) where $\delta_{\rm S}$ is the isotope composition of source water, $\delta_{\rm V}$ is the isotopic composition of water vapour in the surrounding air, $e_{\rm a}$ and $e_{\rm i}$ are the vapour pressures in the atmosphere and intercellular spaces, ε^* is the proportional depression of equilibrium vapour pressure by the heavier molecule (9.2% at 25 °C; ref. 4) and $\varepsilon_{\rm k}$ is the kinetic fractionation factor, 28.5% for diffusion through stomata and 18.9% in the boundary layer. Liquid $H_2^{18}{\rm O}$ is concentrated at the evaporating sites and so diffuses away from them in the liquid phase, relative to $H_2^{16}{\rm O}$. This is | | Symbols used in text | |--|--| | ā | Weighted mean of discriminations occurring during the | | | diffusion of CO ₂ from ambient air to the sites of carboxylation | | a _w | Fractionation against C18O16O (compared to C16O2) during | | | dissolution and diffusion in water | | A | Net rate of CO ₂ assimilation (=GPP at regional or global level) | | Ca | Mole fraction of CO ₂ in air | | Ca | Atmospheric partial pressure of CO ₂ (pCO ₂) | | C_{c} | pCO ₂ in chloroplast | | $C_{\rm st}$ | pCO ₂ in substomatal cavities | | D | Leaf-to-air vapour pressure difference | | δ_{a} | Oxygen (0) isotope composition of atmospheric CO ₂ relative | | | to PDB-CO ₂ | | δ_{an} | O isotope composition of CO ₂ released anthropogenically | | | (PDB-CO ₂ scale) | | δ_{c} | O isotope composition of CO ₂ in chloroplast (PDB-CO ₂ scale) | | $\delta_{\rm E}$ | O isotope composition of water at sites of evaporation in | | 8 | leaf (SMOW scale) | | $\begin{vmatrix} \delta_{L} \\ \delta_{o} \end{vmatrix}$ | O isotope composition of bulk leaf water (SMOW scale) O isotope composition of water in the ocean (SMOW scale) | | $\delta_{\rm p}$ | O isotope composition of precipitation (SMOW scale) | | δ_r | O isotope composition of respired CO ₂ (PDB-CO ₂ scale) | | $\delta_{\rm s}$ | O isotope composition of water in soil (SMOW scale) | | δ_{v} | O isotope composition of water vapour in air (SMOW scale) | | Δ_{A} | Discrimination against ¹⁸ O (compared to ¹⁶ O) during net CO ₂ | | ^ | assimilation | | e_a | Ambient water vapour pressure | | e _i | Water vapour pressure in intercellular spaces of leaves | | E _√ | Elevation | | ε_{k} | Kinetic fractionation against H ₂ ¹⁸ O compared to H ₂ ¹⁶ O during | | | diffusion in air | | ε^* | Proportional depression of vapour pressure of H ₂ ¹⁸ O com- | | _ | pared to H ₂ ¹⁶ 0 | | F _{an} | Molar flux of CO ₂ to atmosphere from anthropogenic sources | | Fao | Gross (one way) molar flux of CO ₂ from atmosphere to ocean | | Foa | Gross molar flux of CO ₂ from ocean to atmosphere | | $\phi_{\rm c}$ | Proportion of A lost in plant respiration | | g | Conductance to diffusion of CO ₂ from atmosphere to chloro-
plasts | | GPP | Gross primary productivity (molar carbon flux) | | Γ | CO ₂ compensation point | | λ | Lagrange multiplier representing the marginal water cost of | | | plant carbon gain | | М | Number of moles of air in the atmosphere | | NPP | Net primary productivity (molar carbon flux) | | P_a | Annual precipitation | | PDB-CO ₂ | CO ₂ formed by addition of phosphoric acid to Pee Dee Belem- | | | nite calcite | | 93 | Molar flux of CO ₂ released by plant and soil respiration | | $R_{\rm a}$ | 180/160 ratio of CO ₂ in ambient air | | R_{A} | $^{18}\mathrm{O}/^{16}\mathrm{O}$ ratio of the net flux of $\mathrm{CO_2}$ into the leaf | | SMOW | Standard mean ocean water | | T | Annual mean temperature | | T_1 | Leaf temperature | | T _m | Monthly mean air temperature | opposed by convection of source water into the leaf, a Péclet effect. Therefore bulk leaf water, δ_L , is less enriched in ^{18}O than water at the evaporating sites. Most solar energy absorption occurs in chloroplasts and evaporation is from the adjacent air-water interfaces 6 . The ^{18}O composition of water in the chloroplasts should therefore be closer to δ_E than to δ_L . The enrichment in 18 O in chloroplast water will be passed to CO_2 , with interconversion being catalysed by the enzyme carbonic anhydrase with an equilibrium fractionation factor of 41.2% at 25 °C (ref. 7). The CO_2 can then be assimilated (at net rate A) or diffuse out of the leaf. The resulting isotope composition of CO_2 in the chloroplast, δ_C , affects the isotope discrimination against 18 O during net CO_2 assimilation. We define this discrimination, Δ_A , as R_a/R_A-1 , where R_a is the 18 O/ 16 O ratio of ambient CO_2 , and R_A is that ratio for the net flux of CO_2 into the leaf. This definition, based on the net rate of assimilation, A (that is, consumption of CO_2), is general enough to include possible effects of the carboxylating enzyme, but in what follows ^{*} Plant Environmental Biology Group, Research School of Biological Sciences, Institute of Advanced Studies, Australian National University, GPO Box 475, Canberra, ACT 2601, Australia we show that such effects are small and that the discrimination is effectively dominated by fractionation during diffusion and by the CO₂-water exchange reaction. Following analogous derivations⁸ for ¹³CO₂, we obtain an equation for ¹⁸O discrimination in the case of complete isotopic equilibration between CO₂ and water before the fixation of CO₂ $$\Delta_{\rm A} = \bar{a} + \frac{C_{\rm c}}{C_{\rm a} - C_{\rm c}} (\delta_{\rm c} - \delta_{\rm a}) \tag{2}$$ where δ_a is the isotope composition of the ambient CO₂, C_c and C_a are the partial pressures of CO₂(pCO₂) in the chloroplast and ambient air, respectively, and \bar{a} is the weighted mean of discriminations occurring during the diffusion from ambient air to the sites of carboxylation within the chloroplast. The value of \bar{a} will be dominated by fractionation during diffusion from the leaf surface to the mesophyll cell wall (8.8%, based on the reduced mass of CO₂ and air) but also includes smaller fractionations in the laminar boundary layer and during diffusion through solution. We estimate \bar{a} to be ~7.4%. Figure 1 shows the relationship between Δ_A and C_c/C_a for leaves of C_3 tree species, for which on-line ^{13}C discrimination has been measured and analysed 9 . Also shown are the relationships between Δ_A and C_c/C_a for chloroplast water having the same composition as source water ($\delta_S=-8.0\%$ SMOW) and for water at the evaporating surface within the leaf. In both cases, equilibrium between CO_2 and H_2O is assumed. Values of Δ_A observed are close to CO_2 in full equilibrium with water at the sites of evaporation. Data shown in Fig. 1 are from woody species but similar results were obtained for wheat and soybean in Canberra and *Phaseolus vulgaris* in Utah. CO_2 produced from respiration and photorespiration can be less enriched than is expected for CO_2 in full equilibrium with δ_E (ref. 10). Nevertheless, isotope exchange during CO_2 assimilation is well predicted using equation (2). $A\Delta_A$ can then simply be regarded as the net result of a flux, gC_a , into the leaf with an isotopic source δ_a (g FIG. 1 Relationship between discrimination against $C^{18}O^{16}O$ ($\Delta_{\rm A}$) and the ratio of chloroplastic to ambient partial pressures of ${\rm CO}_2$ ($C_{\rm c}/C_{\rm a}$) for ${\rm C}_3$ tree species grown under conditions of either full sunlight or under shade cloth. Full experimental details related to $^{13}{\rm C}$ discrimination have been provided 9 . The estimates of $C_{\rm c}$ used here are those obtained from $^{13}{\rm C}$ discrimination. but with the internal conductance for ${\rm CO}_2$ diffusion within the leaf multiplied by 0.7 to account for $C_{\rm c}$ estimates from $^{13}{\rm CO}_2$ discrimination being weighted by assimilation rates, and $C_{\rm c}$ values appropriate for ${\rm C^{18}O^{16}O}$ discrimination being weighted by diffusion conductances (see appendices 1 and 2 of ref. 9). \blacksquare , Sun peach (*Prunus persica*); \blacktriangledown , shade peach; \Box , sun grapefruit (*Citrus paradisi*); ∇ , shade grapefruit; \bigcirc , sun lemon. Also shown are the values expected if ${\rm CO}_2$ were in full equilibrium with source water ($\delta^{18}{\rm O}_{\rm SMOW} = -8.0\%$) or in full equilibrium with water at the evaporating surface ($\delta^{18}{\rm O}_{\rm SMOW} = +7\%$ at 25 °C and $D=1.1\,{\rm kPa}$). $\delta^{18}{\rm O}_{\rm PDB}$ of ${\rm CO}_2$ entering the leaf chamber was typically -7%. (Canberra). being the conductance to diffusion), and a flux, gC_c , out of the leaf with the isotope source, δ_c , being equivalent to that for full equilibrium between CO_2 and evaporating surface water. Each flux is subject to discrimination, \bar{a} , during diffusion. To calculate Δ_A on a global basis, we first estimated soil water isotope composition which reflects the precipitation (δ_P) with seasonal variability in δ_P almost completely dampened^{11,12}. It was calculated by regressing δ_P for sites in the IAEA network¹³ against annual mean temperature, T (°C), annual precipitation, P_a (m) and elevation, E_v (m). The best fit obtained was $$\delta_{\rm P}$$ (SMOW) = $(0.579 T - 0.0114 T^2 - 1.35 P_a + 4.47 P_a^2 - 0.147 \sqrt{E_a - 9.80}) \times 10^{-3}$ With $\delta_{\rm P}$ simulated at 2.5° resolution using temperature ¹⁴, precipitation ¹⁵ and elevation ¹⁶ fields, the result is shown in Fig. 2. To calculate $\delta_{\rm E}$, $\varepsilon_{\rm k}$ was taken as 26% and $(\delta_{\rm V}-\delta_{\rm S})$ was calculated from simulations of the global H₂ ¹⁸O atmospheric cycle ¹⁷ for continental regions, taking monthly values of $\delta_{\rm v}$ and annual precipitation-weighted values of $\delta_{\rm s}$. Leaf temperature ($T_{\rm 1}$) was calculated as $T_{\rm 1}=1.05(T_{\rm m}+2.5^{\circ})$. The 2.5° addition accounts for a daytime increase in air temperature over monthly mean air temperature ($T_{\rm m}$) and the 5% allows for net canopy to air heat fluxes. Monthly relative humidities were calculated using dewpoint temperatures and adding 1 °C to account for higher daytime vapour pressures. We then used δ_a for 1985¹, constant at +0.77% between 90° S and 32° S, then decreasing linearly with latitude to -1.37% at 90° N. δ_c was taken as the value for CO₂ in full equilibrium with δ_E , and Δ_A was then obtained from equation (2) with \bar{a} = 7.4%, allowing C_c/C_a to vary with leaf-to-air vapour pressure difference, D. We first calculated $C_{\rm st}$, the $p{\rm CO}_2$ in the substomatal cavities, using a simple stomatal model¹⁸ as $C_{\rm st}/C_a$ = $1-\sqrt{\{1.6D(C_a-\Gamma)/(\lambda C_a^2)\}}$, where Γ is the CO₂ compensation point and λ is a Lagrange multiplier¹⁹ dependent upon vegetation type and photosynthetic mode as defined by a 1° resolution data set of land cover²⁰. $(C_{\rm st}-C_c)/C_a$ was taken as 0.1 (ref. 9). On a regional scale there are variations in temperature, δ_S (Fig. 2), relative humidity and C_c/C_a that cause Δ_A to vary (Fig. 3) from -20% in arctic tundra to +32% in the dry steppes of Kazakhstan and Ukraine. In the arid areas of Africa and Australia, Δ_A is low owing to the dominance of C₄ species with low C_c/C_a . To assess the impact of discrimination against C TO TO on a global scale, we then calculated a globally averaged Δ_{λ} , weighted by CO₂ assimilation (gross primary productivity: GPP). Net primary productivity (NPP) was first related to temperature and precipitation^{21,22} but with NPP=0 in months where mean air temperature was less than -5 °C. A (=GPP) and NPP are related; $A = NPP/(1 - \phi_c)$, where ϕ_c is the proportion of A lost in plant respiration. We took into account the variation in ϕ_{c} , which ranges from 0.3 to 0.5 for herbaceous species 23.24, is 0.3-0.6 for temperate zone forests²⁵ and 0.65-0.80 for tropical forests²⁶. ϕ_c has been estimated and GPP values converted to a carbon using land cover data²⁰. We estimate GPP to be 12.5 Pmol C yr⁻¹ (where 1 Pmol C = 12×10^9 ton C), with 16% of the total by C_4 plants. Weighting according to GPP gives δ_S = -7.9% (SMOW), $\delta_v = -18.2\%$ (SMOW), relative humidity at the leaf surface = 0.65, $\delta_{\rm P}$ = ±4.4% (SMOW), $C_{\rm e}/C_{\rm e}$ = 0.57, and Uncertainty in C_c/C_a has the greatest potential impact on model results: a change of 1 p.p.m. in C_c will cause a change of almost 0.1% in the calculated Δ_A . The ratio C_c/C_a is, however, a reasonably conservative parameter, depending mostly on plant photosynthetic mode and $D^{6,18,19}$. These effects are accounted for in the current model. Upon development of soil water deficits, C_c/C_a can decline^{6,19}. Nevertheless, under such circumstances A is low and hence contributes little to the GPP-weighted value calculated here. Furthermore, in productive regions that regularly experience soil water deficits, the vegetation is often domi- nated by C_4 grasses. As can be seen from Fig. 1, Δ_A is less sensitive to C_c/C_a at lower values of that ratio, such as are typically found in C_4 plants. Plant $\delta^{13}C$ values can be used to estimate C_c of C_3 species^{8,9}. Further data from around the globe will help constrain this uncertainty. The other significant source of uncertainty is $(\delta_{\rm V}-\delta_{\rm S})$, with a 1% error in our estimate causing a 1% change in $\Delta_{\rm A}$ for globally averaged conditions. The GPP-weighted value we calculate here (-10.3%) is close to that usually observed²⁸⁻³¹. Uncertainties in the estimation of leaf temperatures introduce only minor inaccuracies into the calculations, and estimates of $\Delta_{\rm A}$ are relatively insensitive to the calculated relative humidity. This is because the stomatal model interacts with D. The reduction in $C_{\rm c}/C_{\rm a}$ accompanying a decrease in atmospheric humidity counters the increase in $\delta_{\rm E}$. With GPP = 12.5 Pmol yr⁻¹ and an atmospheric CO₂ pool of 62.5 Pmol, we estimate a global exchange time of 5 years for the carbon atom, and with C_c/C_a = 0.57, only 2.2 years for the oxygen atoms in CO₂. This is much faster than the exchange of oxygen atoms with the ocean (8.3 years). The ¹⁸O content of atmospheric CO₂ is also influenced by release of CO₂ from soils and plants via respiration and release of CO₂ from fossil fuel and biomass burning^{1,32}. Therefore, as already done for ¹³CO₂ (ref. 33), we can write $$Mc_{a} \frac{d\delta_{a}}{dt} = F_{oa}(\delta_{o} - a_{w} - \delta_{a}) + F_{ao}a_{w} + \Re(\delta_{r} - \delta_{a})$$ $$+ A\Delta_{A} + F_{an}(\delta_{an} - \delta_{o})$$ (3) where M is the number of moles of air in the atmosphere, c_a FIG. 2 Precipitation-weighted isotopic composition (SMOW) of precipitation. FIG. 3 Estimated mean annual values for discrimination against ^{18}O in $\text{CO}_2\left(\Delta_{\text{A}}\right)$. Empty grid squares are modelled to have no terrestrial productivity. is the mole fraction of CO_2 in the atmosphere, F_{oa} and F_{ao} are the annual gross (one way) molar fluxes of CO_2 between oceans and atmosphere and atmosphere and oceans, \Re is the annual gross flux for CO_2 released from plant and soil respiration, A is the flux of CO_2 associated with photosynthetic CO_2 assimilation (gross primary productivity, GPP) and F_{an} is the influx of CO_2 from anthropogenic sources. δ_o is the isotopic composition of CO_2 in equilibrium with ocean water, δ_r is the isotopic composition of CO_2 respired by plants and soils as it enters the atmosphere, δ_{an} is the isotopic composition of anthropogenic CO_2 , and a_w is the combined solubility/aqueous diffusion fractionation for $C^{18}O^{16}O$. Solution of equation (3) requires $d\delta_a/dt$, and the effective sink terms, $(F_{ao} - F_{oa})$ and $(A - \Re)$. We solve a simpler case (effectively pre-anthropogenic), assuming a steady state with $F_{\text{oa}} = F_{\text{ao}}$, $A = \Re$, and $F_{\text{an}} = 0$, and solve for δ_r , taking $F_{\text{oa}} = F_{\text{ao}} = 7.5 \,\text{Pmol yr}^{-1}$. δ_{o} was analysed from salinity and sea-surface temperatures using surface-water salinity δ¹⁸(H₂O) relationships², calculating the isotopic composition of CO₂ (PDB-CO₂ scale) in equilibrium with ocean water (SMOW scale) 36,37 at 2.5° resolution. This gives $\delta_{o} = +1.25\%$. Weighted according to cosine of latitude, $\delta_a = +0.18\%$. From inspection of equation (3), with respiration and GPP in balance on a global scale, because δ_a differs little from δ_o , δ_a should be close to $\Delta_A + \delta_r$. Indeed, from equation (3) we calculate that $\delta_r = -14.0\%$ (PDB-CO₂). This is 1.2% enriched compared with CO₂ in full equilibrium with soil water 12,38 , -6.4%. followed by 8.8% depletion¹² as a result of slower diffusion of C¹⁸O¹⁶O. This may reflect in part that the ratio of atmospheric to soil CO2 concentration is greater than zero, and that soil water at the evaporating front can be slightly enriched compared to bulk soil water. We conclude that for the present purposes, δ_r is well represented by $\delta_{\rm p}$, equilibrated with CO₂, minus 7.6%. Using the last parameterization of δ_e , 10° latitudinal averages of Δ_A and δ_r (weighted by GPP) were calculated and are presented, with their sum, in Fig. 4, together with δ_o and δ_a . The significance of the sum lies in the future use of this model to predict local δ_a . This will require the linking of surface isotope exchange with an atmospheric mixing model. The local values of δ_a will be smoothed compared with the local isotope 'equilibrium values' (δ_{eq}) that would occur if there were no mixing. For oceans, $\delta_{eq} = \delta_o$, and for the terrestrial biosphere, $\delta_{eq} = (\Delta_A + \delta_r)$. Surface isotope effects will be dominated south of 20° S by oceans, and we note that δ_o increases with latitude as a consequence of lower sea-surface temperatures². Surface effects will be increasingly dominated by the terrestrial biosphere up to 65° N. At this scale, Δ_A and δ_r tend to mirror each other over much of the globe (when averaged annually over a 10° FIG. 4 10° latitudinal averages, weighted by GPP, of the predicted discrimination against ^{18}O in CO $_2$ (Δ_{A}), $\delta^{18}\text{O}$ (PDB-CO $_2$) of: respired CO $_2$ (δ_{r}), the sum $\Delta_{\text{A}}+\delta_{\text{r}}$, CO $_2$ in equilibrium with the ocean (δ_{o}) and mixed atmospheric CO $_2$ (δ_{a} data from ref. 1). band), but there is considerable disequilibrium at high northern latitudes. $(\Delta_A + \delta_r)$ decreases markedly above 45° N to a minimum in the 70°-80° N band (Fig. 4). This is largely a consequence of more negative δ_S (Fig. 2). It is consistent with, and provides an explanation for, measurements of mixed atmosphere δ_a (ref. 1), in which there was a meridional gradient (with strong depletion at 71° N) that required an enormous isotope exchange flux to maintain. For any particular biome there is no unique relationship between Δ_A and δ_r , and the seasonal cycle in δ_a at most locations should not therefore have a unique relationship with pCO_2 . This is in contrast to $^{13}CO_2$ and is consistent with variability in diurnal 39 , seasonal 32,40 and annual 1 δ_a . Nevertheless, in regions south of 60° N, Δ_A is sometimes close to $(\delta_a - \delta_r)$ and in such conditions a plot of δ_a versus $1/C_a$ yields δ_r at $1/C_a = 0$ (ref. 39). For air over Switzerland, a mean value of -16.4% (PDB-CO₂) was calculated 32 . Our model gives an average δ_r of -14.7% and an average Δ_A of 19.2% for that region. The most important conclusion of this work is that, not only do terrestrial fluxes have a different effect on δ_a from oceanic fluxes, but different biomes also have markedly different discriminations (Fig. 3). Accurate measurements of rates of change in δ_a in a comprehensive global network together with appropriate meteorological data should therefore help to resolve the present conflicts about the relative role of the oceans and the terrestrial biosphere in the net uptake of CO_2 (equation (3)). They should also allow the identification of components of the terrestrial biota currently acting as net carbon sinks. Received 10 November 1992; accepted 22 March 1993. - 1. Francey, R. J. & Tans, P. P. Nature 327, 495-497 (1987). - Craig, H. & Gordon, L. I. in Proc. Conf. Stable Isotopes in Oceanographic Studies and Paleotemperatures 9-130 (Laboratory of Geology and Nuclear Science, Pisa, 1965). - Farquhar, G. D., Hubick, K. T., Condon, A. G. & Richards, R. A. in Stable Isotopes in Ecological Research (eds Rundel, P. W., Ehleringer, J. R. & Nagy, K. A.) 21-40 (Springer, New York, 1989). - Bottinga, Y. & Craig, H. Earth planet, Sci. Lett. 55, 285-295 (1969). - Merlivat, L. J. chem. Phys. 69, 2864-2871 (1978) - Cowan, J. R. Adv. Bot. Res. 4, 117-228 (1977). O'Neil, J. R., Adami, L. H. & Epstein, S. J. Res. U.S. geol. Survey 3, 623-624 (1975) - Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. A. Rev. Plant Physiol. Plant molec. Biol. 40, 503-537 (1989). Lloyd, J., Syvertsen, J. P., Kriedemann, P. & Farquhar, G. D. Plant Cell Environ. 15, 873-900 (1992). - Yakir, D., Berry, J. A., Giles, L. J., Osmond, C. B. & Thomas, R. B. in *Physiological Processes from the Leaf to the Globe* (eds Ehleringer, J. R. & Field, C. B.) 323–338 (Academic, San Diego, 1993). - Yurtsever, Y. & Gat, J. R. in Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle (eds Gat, J. R. & Gonfiantini, R.) 103-142 (IAEA, Vienna, 1981). - 12. Hesterberg, R. & Siegenthaler, U. Tellus **B43**, 197-205 (1991). - International Atomic Energy Agency, Environmental Isotope Data No. 1: World Survey of Isotope Concentration in Precipitation Vols 7–9 (1983-1988). - 14. Oort, A. Natn. Oceanic Atmos. Admin. Prof. Pap. 14 (1983) - 15. Shea, D. J. Tech. Note natn. Cent. atmos. Res. TN-269 + STR (NCAR, Boulder, 1986) - 16. Cogley, J. G. Tech. Note 85-4 (Trent Univ., Peterborough, Ontario, 1985). - 17. Jouzel, J. et al. J. geophys. Res. **96**, 7495–7507 (1991) 18. Lloyd, J. Austr. J. Plant Physiol. **18**, 649–660 (1991). - 19. Cowan, I. R. & Farquhar, G. D. Symp. Soc. exp. Biol. 31, 471-505 (1977). - Henderson-Sellers, A., Wilson, M. F., Thomas, G. & Dickinson, R. E. Natn. Cent. for atmos. Res. Tech. Note-272 + STR (1986). - Lieth, H. in *Primary Productivity of the Biosphere* (eds Lieth, H. & Whittaker, R. H.) 237–263 (Springer, Berlin, 1975). - Taylor, J. A., Brasseur, G. P., Zimmerman, P. R. & Cicerone, R. J. J. geophys. Res. 96, 3013–3044 (1991) - Poorter, H., Remkes, C. & Lambers, H. *Pl. Physiol.* **94**, 621-627 (1990). Masle, J., Farquhar, G. D. & Gifford, R. M. Austr. J. Plant Physiol. **17**, 465-487 (1990). - Jarvis, P. & Leverenz, J. W. in *Encyclopaedia of Plant Physiology* Vol. 12D (eds Lange, O. L., Nobel, P. S., Osmond, C. B. & Zeilger, H.) 233-280 (Springer, Berlin, 1983). 26. Medina, E. & Klinge, H. in *Encyclopaedia of Plant Physiology* Vol. 12D (eds Lange, O. L., Nobel, - P. S., Osmond, C. B. & Ziegler, H.) 281-304 (Springer, Berlin, 1983). - 27. Poorter, H. in Causes and Consequences of variations in Growth Rate and Productivity of Higher Plants (eds Lambers, H., Cambridge, M. L., Konings, H. & Pons, T. L.) 49-68 (SPB Academic, The - 28. Zundel, G., Miekeley, W., Grisi, B. M. & Försel, H. *Radiat. Envir. Biophys.* **15**, 203–212 (1978). 29. Barnes, C. J. & Allison, G. B. *J. Hydrol.* **100**, 143–176 (1988). - Bariac, T., Rambal, S., Jusserand, C. & Berger, A. Agric. For. Meteor. 48, 263-283 (1989). - 31. Bariac, T., Jusserand, C. & Mariotti, A. Geochim, cosmochim, Acta 54, 413-424 (1990) - 32. Friedli, H., Siegenthaler, U., Rauber, D. & Oeschger, H. Tellus B39, 80-88 (1987) - Tans, P. P. Tellus B32, 464-469 (1980). - 34. Houghton, J. T., Jenkins, G. J. & Ephraums, J. J. Climate Change: The IPCC Scientific Assessment (Cambridge University Press, UK, 1990). - Levitus, S. Climatological Atlas of the World Ocean. (Natn. Oceanic Atmosp. Admin. Prof. Pap. 13, 1981). - 36. Friedman, I. & O'Neil, J. R. in US geol. Surv. Prof. Paper. 440-KK (1977) - 37. O'Neil, J. R. & Adami, L. H. J. phys. Chem. 73, 1553-1558 (1969) - 38. Allison, G. B., Colin-Kaczala, C., Filly, A. & Fontes, J. C. H. *J. Hydrol.* **95**, 131–141 (1987) 39. Keeling, C. D. *Geochim. cosmochim. Acta* **24**, 277–298 (1961). - 40. Mook, W. G., Koopmans, M., Carter, A. F. & Keeling, C. D. J. geophys. Res. 88, 10915-10933 (1983). ACKNOWLEDGEMENTS. We thank I. R. Cowan, C. B. Osmond, J. A. Berry, J. R. Evans, J. E. Robertson and S. von Caemmerer for comments, R. Francey, A. Chivas and J. Olley for isotope standards, R. Koster for simulations of δ^{18} O of water vapour in relation to precipitation and I. Watterson for ## A new species of living bovid from Vietnam Vu Van Dung, Pham Mong Giao, Nguyen Ngoc Chinh, Do Tuoc, Peter Arctander & John MacKinnon*† Forest Inventory and Planning Institute, Ministry of Forestry, Hanoi, Vietnam * Asian Bureau for Conservation, 18/E Capital Building, 175-191 Lockhart Road, Wanchai, Hong Kong IN May 1992 a joint survey by the Ministry of Forestry and World Wide Fund for Nature of the Vu Quang Nature Reserve, Ha tinh province, found three sets of long straight horns of a new bovid (Mammalia, Artiodactyla) in hunters' houses¹. None of the specimens had dentition. On four follow-up visits by Vietnamese scientists new specimens were discovered and surveys of forests in neighbouring Nghe an province revealed more localities and some partial specimens. In all, we have examined more than 20 specimens. Three have complete upper skulls and dentitions, two have lower jaws and dentitions. Three complete skins have been collected. The specimens are distinct in appearance, morphology and DNA sequence and cannot be ascribed to any known genus. Only two bovid genera are known from this part of Asia, Bos and Naemorhedus = Capricornis^{2,3}. A new genus and species are therefore described. Such a discovery is of great significance. It has been more than 50 years since any comparable find of a large mammal species has been made; the last being the kouprey Bos = Novibos sauveli, another Indochinese bovid (Urbain, 1937). Moreover, the bovids (cattle, goats and antelopes) are a mammal family of great value to mankind. Many species have proven or potential value for domestication or cross-breeding. A three-month field study is planned to observe the living animal. ## FORMAL DESCRIPTION Family Bovidae Subfamily Bovinae Tribe? Boselaphini Genus Pseudoryx, gen. nov. Diagnosis. Pseudoryx differs significantly from all described genera in appearance, morphology, cranial and dental features and DNA. The long, smooth, almost straight, slender horns, elongated premolars, large face gland and distinctive colour pattern are diagnostic. **Description.** See under species description. **Etymology.** The name reflects the superficial similarity to *Orvx* in having long straight horns slightly recurved in profile, with bold black and white facial markings, while clarifying that the animal is not closely related to Orvx. Type species. P. nghetinhensis, sp. nov. Pseudoryx nghetinhensis sp. nov. Diagnosis. The only species of the genus. Diagnosis as for genus. Description. The total body weight of the adult is estimated at about 100 kg. Total length from nose to anus is about 1.5 m. Height at the shoulder is about 80-90 cm. Length from spine to front foot across preserved skin is 96 cm. Tail is short, about 13 cm of bone with fluffy black tassle. Ear length is quite short at about 10 cm. Skull length varies between 32 and 36.5 cm. The skull is highly bridged in the nasal area. The horns are long, almost straight, smooth, almost parallel in females, and only moderately diverging in males. They are almost circular in cross-section, with horn cores extending close to the tip. Horn length varies from 32 to 52 cm, with a mean (18) = 41 cm. Width between tips varies from 7.5 to 20 cm, with mean (17) = 13.3 cm. Both length and distance between the tips show a bimodal distribution, with inferred males having longer more divergent horns than females. The insertion of the horns is much wider than for goat-antelopes (such as the serow Naemorhedus sumatraensis; Fig. 3b), similar to the mountain anoa Bubalus quarlesi, but narrow for cattle. Internal width between horns basally varies from 3.0 to 4.0, with a mean (6) = 3.7 cm. The outer width across the horns basally varies from 10 to 12, with a mean (6) = 10.5 cm. The basal 7 cm shows narrow annuli, but FIG. 1 Photographs of Vu Quang bovid: a, type specimen FIPI/MVQ001; b, stuffed skin of another individual. [†] To whom correspondence should be addressed