Plants assimilate carbon by one of three photosynthetic pathways, commonly called the C3. C4, and CAM pathways. The C4 photosynthetic pathway, found only among the angiosperms, represents a modification of C3 metabolism that is most effective at low concentrations of CO2. Today, C4 plants are most common in hot, open ecosystems, and it is commonly felt that they evolved under these conditions. However, high light and high temperature, by themselves, are not sufficient to favor the evolution of C4 photosynthesis at atmospheric CO2 levels significantly above the current ambient values. A review of evidence suggests that Ca plants evolved in response to a reduction in atmospheric CO2 levels that began during the Cretaceous and continued until the

Plants possessing the C_3 photosynthetic pathway dominate most terrestrial ecosystems¹, and account for about 85% of all plant species. About 10% of the earth's flora possess CAM photosynthesis, and commonly grow in xeric sites, such as deserts and epiphytic habitats². C_4 plants dominate warm to hot, open sites, but on a floristic basis comprise the lowest percentage of the terrestrial flora. Tropical and temperate grasslands, with abundant warm-season precipitation, are dominated by C_4 species.

Miocene.

C₄ plants have great economic significance, both as crops and weeds³. For this reason, C₄ plants have undergone much scrutiny

James Ehleringer and Lawrence Flanagan are at the Dept of Biology, University of Utah, Salt Lake City. UT 84112, USA; Rowan Sage is at the Dept of Botany, University of Georgia, Athens, GA 30601, USA; Robert Pearcy is at the Dept of Botany, University of California, Davis, CA 95616, USA.

Climate Change and the Evolution of C₄ Photosynthesis

James R. Ehleringer, Rowan F. Sage, Lawrence B. Flanagan and Robert W. Pearcy

since the discovery of the C4 pathway in the mid-1960s. Although many aspects of C₄ metabolism are now well understood⁴, questions remain about the initial evolution and subsequent expansion of C₄ plants. It is commonly thought that hot, arid conditions have favored their evolution4. However, while such environments have been common throughout the earth's history, the evolution of C₄ plants appears to be more recent (see below). The performance of C₄ plants relative to C₃ plants is highly dependent on levels of atmospheric CO2: low CO2 conditions favor C₄ species and high CO₂ levels favor C₃ species⁵. Geological evidence indicates that it has been only during the past 50 to 60 million years that CO2 levels have declined to sufficiently low concentrations that C₄ photosynthesis has an advantage over C3 photosynthesis. Here we discuss the evidence that the primary selective factor influencing the evolution of C₄ photosynthesis was changes in the atmospheric CO2 concentration. rather than aridity or high tempera-

Inefficiency of carboxylation in C₃ photosynthesis

Net carbon fixation in C₃ photosynthetic organisms is catalysed by ribulose-1,5-bisphosphate

carboxylase/oxygenase (Rubisco)7. Rubisco normally catalyses the reaction between atmospheric CO2 and RuBP to produce two threecarbon phosphoglycerate ecules (PGA), which are then further metabolized to the major end products of photosynthesis. However, Rubisco can also catalyse the oxygenation of RuBP to form one PGA and one phosphoglycolate, and further metabolism of phosphoglycolate results in the release of CO₂; these activities constitute photorespiration, a process that reduces the overall efficiency of net photosynthesis.

The oxygenase activity of Rubisco occurs, despite the physiological costs involved, because of particular aspects of the carboxylation reaction mechanism. During the carboxylation of RuBP, an intermediate is formed that is susceptible to reaction with oxygen7. Thus, the oxygenase activity of Rubisco may not have any useful function. but is simply an inevitable consequence of the reaction mechanism under aerobic conditions7. As oxygen in the atmosphere increased because of photosynthesis, the photorespiratory pathway evolved to process phosphoglycolate and recycle as much fixed carbon as possible. CO2 and O2 are competitive substrates, but Rubisco has a

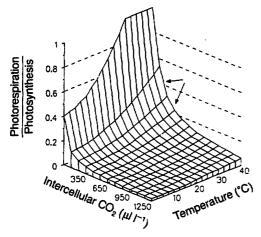


Fig. 1. Modelled CO₂ and temperature response of the ratio of photorespiration to the gross rate of photosynthesis in C₁ plants. Oxygen concentration was held constant at the current level of 21%. Arrows indicate the range of CO₂ concentrations typically occurring in leaves of C₁ plants under present atmospheric conditions. *Model derived from Ref. 11*.

much greater specificity for CO $_2$. Under current atmospheric conditions (350 μ l l $^{-1}$ CO $_2$, 21% O $_2$, 78% N $_2$), however, the CO $_2$ concentration in the chloroplasts of C $_3$ leaves is approximately 1000 times less than that of O $_2$. This low CO $_2$:O $_2$ ratio allows a significant amount of photorespiration to occur, which reduces the efficiency of carboxylation during C $_3$ photosynthesis.

The ratio of photorespiration to photosynthesis is not fixed, but varies with environmental conditions. It is dependent on three factors: CO₂ concentration, O₂ concentration and leaf temperature. In-

creasing temperature reduces the specificity of Rubisco for CO2 and decreases the concentration of CO_2 relative to O_2 within the chloroplast⁸⁻¹⁰. Using established equations11, we can model the ratio photorespiration to photosynthesis as a function of CO2 and temperature, while keeping O₂ constant at current levels (Fig. 1). At either low temperature or high CO₂ concentration, photorespiration is minor. However, under present atmospheric CO2 concentrations, photorespiration is a major component at moderate temperatures and becomes even greater as temperature is further increased. On the other hand, elevating CO₂ from the current ambient level of 350 µl l-1 significantly reduces the rate of photorespiration. For example, a doubling of ambient CO2, such as is anticipated to occur within the next 50-100 years, will result in approximately a 50% reduction in the rate of photorespiration. Increasing current atmospheric CO2 levels five-fold would nearly eliminate photorespiratory activity in C₃ plants.

Benefits associated with C4 photosynthesis

There are two mechanisms that can be used to improve the carboxylation:oxygenation ratio of Rubisco: increases in the CO₂/O₂ specificity of the enzyme and/or increases in the

ratio of CO₂ to O₂ present at the enzyme's active site. There is evidence that the relative specificity of Rubisco for CO₂ is greater in angiosperms than in more primitive plant groups, but there is little variation in Rubisco's characteristics among vascular C₃ plants⁷. The most successful mechanism for reducing photorespiration and thus increasing carboxylation efficiency is the C₄ photosynthetic pathway.

In C₄ plants, atmospheric carbon is initially fixed in a reaction catalysed by phosphoenol pyruvate carboxylase (PEP carboxylase)¹². This reaction takes place in mesophyll cells of C₄ plants where Rubisco is

is initially fixed in a reaction catalysed by phosphoenol pyruvate carboxylase (PEP carboxylase)¹². This reaction takes place in mesophyll cells of C₄ plants where Rubisco is absent (Fig. 2). The resulting fourcarbon organic acids are transported internally from the mesophyll to bundle sheath cells where they are decarboxylated to release CO₂. Chloroplasts in the bundle sheath cells contain Rubisco and fix the CO₂ released by C₄-acid decarboxylation using normal C3 photosynthetic metabolism (Fig. 2). Since PEP carboxylase has a higher affinity for its substrate and a higher maximal velocity than Rubisco, the C₄ pathway acts as a CO₂-concentrating mechanism, increasing the CO2 concentration within the bundle sheath cells. In plants using C₄ photosynthesis, mesophyll CO₂ concentrations are approximately 100 μl l-1, whereas bundle sheath CO₂ concentration may be 10- to 20-fold higher1. The carboxylation efficiency of Rubisco is improved, therefore, and photorespiration becomes negligible in C4 plants. Secondary improvements in water-use and nitrogen-use efficiencies will also occur in C4 plants, associated with advantages of the CO2-concentrating mechanism^{1,13}.

The presence of the C₄ photosynthetic pathway leads to a markedly different response of net photosynthesis to changes in atmospheric CO₂ or O₂ concentration than that found in C₃ plants^{5,14}. While at low CO₂ concentrations C₄ plants typically have higher photosynthetic rates than C_3 plants, C_4 photosynthesis becomes saturated at concentrations above the current atmospheric levels, whereas C3 photosynthesis does not (Fig. 3al. Also, because of Rubisco oxygenation and subsequent photorespiration, the quantum yield or light-use

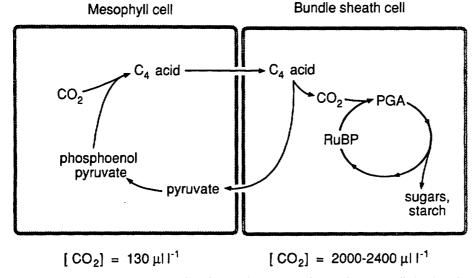


Fig. 2. Diagrammatic representation of C_1 photosynthesis. Atmospheric carbon is initially fixed inside leaf mesophyll cells in a reaction catalysed by phosphoenol pyruvate (PEP) carboxylase. The resulting C_4 acid is decarboxylated inside the bundle sheath cell, providing a source of CO_2 for ribulose-1.5-bisphosphate carboxylase (Rubisco) and the normal C_1 photosynthetic cycle. C_4 photosynthesis acts as a CO_2 -concentrating mechanism. The CO_2 concentration inside the bundle sheath, where Rubisco functions, is 10- to 20-fold higher than the CO_2 concentration in the leaf mesophyll cells. PGA, phosphoglycerate; RuBP, ribulose bisphosphate.

efficiency of C₃ plants is strongly dependent on CO₂ (Fig. 3b). In C₄ plants, the light-use efficiency is essentially independent of atmospheric CO2, but does not attain the maximum levels of C3 plants because of the extra ATP costs of the CO₂-concentrating mechanism¹⁵. Under changing atmospheric CO₂ levels, though, it is clear that low CO2 levels should favor C4 photosynthesis whereas high CO2 levels should favor C3 photosynthesis. Studies of growth and competition between C3 and C4 plants under elevated CO2 conditions have borne out this prediction 16-18.

Diversification of C₄ taxa in the plant kingdom

The C₄ photosynthetic pathway represents a modification of the C₃ photosynthetic cycle, and is, therefore, considered to be the derived, more evolutionarily advanced pathway. There are no enzymes or anatomical structures present in C₄ plants that are not already present in C₃ plants¹⁹. Thus, the evolution of the C₄ pathway from plants originally possessing the C₃ pathway appears to have involved relatively minor changes in enzyme characteristics, enzyme distribution and structural modification such as the enlargement of the bundle sheath cells. That these changes might have arisen easily and rapidly is suggested by the high degree of heritability of key aspects of C4 metabolism in C_3 – C_4 crosses^{20–22}, and by the large number of species that are anatomically and/or biochemically intermediate between C₃ and C₄ metabolism, especially in those genera such as Moricandia and Parthenium that have not yet developed C₄ taxa²³. In addition, there is at least one species, Eleocharis vivipara, capable of expressing either C₃ or C₄ photosynthesis in different tissues depending on environmental conditions24.

Because C_4 photosynthesis occurs in diverse, distantly related angiosperms with no common C_4 ancestors, it is likely that C_4 photosynthesis evolved independently many times^{4,19} (Fig. 4). C_4 photosynthesis is present in at least 18 families, and may have evolved independently in all of them, since each family contains both C_3 and C_4 genera^{25,26}. Even within genera, C_4

photosynthesis may have evolved independently several times. For example, in the grass genus *Panicum*, three species exhibit enough biochemical variation in C₄ photosynthesis to indicate separate origins¹⁹. It is likely that C₄ photosynthesis developed in many different regions simultaneously, perhaps in response to some common change in the global environment.

Conditions favoring the evolution of C₄ photosynthesis

Primitive photosynthetic organisms evolved in an atmosphere in which the concentration of CO₂ was high and the concentration of O₂ was minimal. In this environment, the oxygenase activity of Rubisco would have been insignificant²⁷. As long as CO₂ concentration remained high, oxygenase activity and photorespiration would have been minor components (Fig. I), even as atmospheric O₂ concentration increased

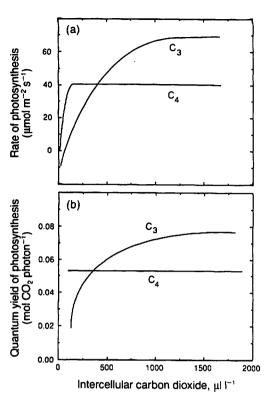


Fig. 3. Effect of CO₂ concentration on the absolute rate of photosynthesis (a) and the quantum yield of photosynthesis or light-use efficiency (b) in C₄ and C₁ plants. Redrawn from Refs 5 and 15.

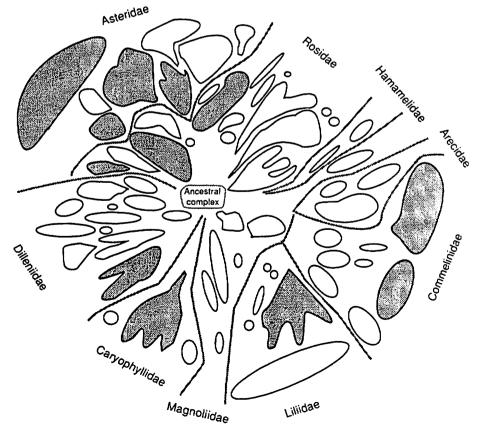


Fig. 4. Distribution of C_4 plants among the plant kingdom. The diagram is arranged so that primitive ancestral plant groups are located near the center, with the more advanced, derived plant groups radiating out from the center. Plant groups containing C_4 species are shaded. Adapted from Refs 42 and 43.

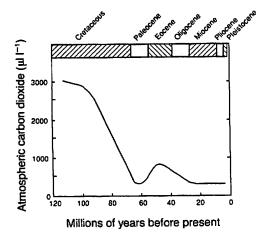


Fig. 5. Modelled change in atmospheric CO₂ concentration during the past 100 million years. Based on data from Ref. 6.

during the Paleozoic. A reduction in global CO_2 concentration to present-day levels, however, would result in a significant loss in carboxylation efficiency. The major selective force for the evolution of the C_4 pathway may have been an atmosphere with greatly reduced CO_2 levels.

It is well established that atmospheric CO₂ concentration has undergone dramatic changes throughout geological time^{28-30,44,45}. When were CO₂ levels high enough to favor C₃ photosynthesis over C₄ photosynthesis? Estimates of atmospheric CO₂ concentrations during the Pleistocene and prior epochs are not precise, but there is general agreement that atmospheric CO₂ levels were at times significantly

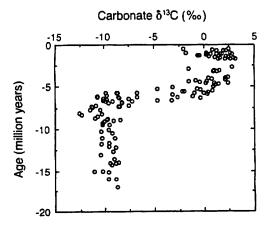


Fig. 6. The change in carbon-isotope composition of paleosol carbonate nodules in the Siwalik geological sequence in northern Pakistan. The carbon-isotope composition of carbonate nodules is enriched approximately 14–16‰ above that of the carbon-isotope composition of plants growing in the soil at the time that carbonate is formed. The negative δ11C values before 7.5 million years ago indicate a C₁-dominated vegetation. The positive δ11C values after 7.5 million years ago indicate a switch to a C₄-dominated flora.

higher than they are today^{28–30}. Claims that gases trapped inside amber could provide information about the CO₂ concentration in ancient atmospheres have proven unfounded³¹. Instead, we must rely on geological carbon-cycle models to estimate long-term changes in global, atmospheric CO₂ concentration.

Lasaga et al. estimate that atmospheric CO₂ levels were over 3000 µl I⁻¹ in the mid Cretaceous, about 100 million years ago⁶ (Fig. 5). Other estimates for this period^{28,30} suggest that CO₂ levels were near 1500-2100 μl l-1. Atmospheric CO₂ levels declined abruptly at the end of the Cretaceous, and during the Paleocene approached current values (Fig. 5). Atmospheric CO, levels have remained relatively low over the past 50 million years, being near current atmospheric levels in the Paleocene and again in the Miocene, and about double current levels during the Oligocene and Eocene (Fig. 5). Atmospheric O₂ levels are thought to have remained relatively constant since Cretaceous.

The rapid drop in CO₂ concentration during the period of major expansion of the angiosperms would have provided strong selection pressure for increased carboxylation efficiency in C₃ plants both in terms of reduced photorespiration and increased light-use efficiency. On the basis of the data in Fig. 3 and the model in Fig. 5, C₄ photosynthesis may have first appeared in the Paleocene, but may have remained suppressed during the periods of elevated CO₂ levels that are thought to have occurred in the Eocene and Oligocene. By the Miocene, however, atmospheric conditions would have again favored C4 photosynthesis, and as shown below, there is strong evidence that C4 species flourished by the late Miocene. Temperature increase alone probably did not play a major role in promoting C4 evolution, primarily because at elevated CO2 concentrations temperature does not affect the carboxylation to oxygenation ratio to the extent that C4 photosynthesis would be favored (Fig. 1). In addition, mean global temperatures have actually declined since the

mid-Cretaceous^{6,32}.

C₃-C₄ intermediate plants, such as Flaveria ramosissima and F. brownii, are believed to represent stages in the evolution of C4 photosynthesis^{23,33}. Apparent photo-respiration rates of C_3 – C_4 intermediates are reduced, but these plants have no other metabolic advantages over C₃ plants in terms of water-, light- or nitrogen-use efficiencies^{23,34}. In most cases, reduced photorespiration rates in the C₃-C₄ intermediates result from the C₄ decarboxylase enzyme being confined to the cells of a rudimentary bundle sheath35. CO2 that is released during photorespiration is then recycled within the bundle sheath cells. which reduces the photorespiration rate of C₃-C₄ intermediate plants. The initial step, therefore, during the evolution of C4 photosynthesis from C3 plants was a slightly improved carboxylation efficiency in C₃-C₄ intermediate plants^{23,33}. This observation is consistent with the idea that C₄ photosynthesis evolved in response to a reduction in global CO2 concentration because of the resulting improved carboxylation efficiency of the C₄ pathway.

Evidence for the appearance of C₄ plants

Geological evidence for the first appearance of C4 plants is scanty, but what exists comes from two sources: (1) plant fossils with welldeveloped bundle sheath anatomy, and (2) the carbon-isotopic composition of fossil soil carbonate layers. Brown and Smith 30 suggested that plants with C4 photosynthesis could have arisen as early as the Cretaceous, but fossil evidence is lacking. The oldest identifiable fossils with pronounced bundle sheath layers date from the late Miocene (approximately seven million years ago)37.

The first clear indication of a shift in dominance from C₃ to C₄ plants comes from fossil carbonate layers in Pakistan³⁸. Soil carbonate layers take on a carbon-isotopic composition related to that of the plants living on the site during carbonate formation³⁹. Since C₃ and C₄ plants differ in carbon-isotopic composition⁴⁰, it is possible to document shifts in the abundance of C₃ and C₄ species within the flora from changes in the carbon-isotope ratios of fossilized carbonate layers. In Pakistan, an abrupt shift in the

carbon-isotope composition of soil carbonate layers indicated a change from a C₃-dominated vegetation to a Ca-dominated flora during the Miocene, approximately 7.5 million years ago (Fig. 6). Similar shifts in the carbon-isotope composition of soil carbonate layers also appear during this same time period in locations in Africa and Nepal (J. Quade, pers. commun.). These dates are also consistent with pollen evidence, which indicates that the world's major grasslands developed during the Miocene41. The C₃ to C₄ vegetational change was associated with a local climatic shift as indicated by the oxygen-isotope composition of these paleosol carbonates. Quade et al.38 have suggested that the changes in oxygen-isotope ratios are indicative of increased warm-season precipitation, perhaps associated with development of the Asian monsoon system in Pakistan.

Conclusions

While it is not currently possible to date the first appearance of C₄ photosynthesis precisely, it can be stated that C₄ photosynthesis has no identifiable advantage in an environment in which atmospheric CO₂ levels are significantly above current ambient levels of 350 µl l-1. and that C₄ photosynthesis most likely evolved sometime after CO₂ levels first declined to near current levels in the Paleocene. Second, a rise in CO₂ levels during the Eocene and Oligocene may have restricted the occurrence of C₄ plants, but by the Miocene - when CO2 levels were again reduced - C4 plants flourished and dominated many grassland habitats. Further reductions in CO2 levels during the Pleistocene would have further stimulated the spread of C₄ plants. It is now questionable whether the proliferation of C₄ plants will continue in an anthropogenically altered atmosphere.

Acknowledgements

We thank Todd Dawson and Raymond Freeman-Lynde for comments on this manuscript. This work has been supported by the National Science Foundation and by the Ecological Research Division, Office of Health and Environmental Research, US Department of Energy. Lawrence Flanagan is supported by an NSERC (Canada) postdoctoral fellowship.

References

I Osmond, C.B., Winter, K. and Ziegler, H. 11982) in *Physiological Plant Ecology* (*Encyclopedia of Plant Physiology*, New Ser., Vol. 12B) (Lange, O.L., Nobel, P.S., Osmond, C.B. and Ziegler, H., eds), pp. 479–547, Springer-Verlag

2 Griffiths, H. (1989) in Vascular Plants as Epiphytes: Evolution and Ecophysiology (Luttge, U., ed.), pp. 42–86, Springer-Verlag 3 Paul, R. and Elmore, C.D. (1984) Weeds Today 15, 3–4

4 Hatch, M.D. (1988) Biochim. Biophys. Acta 895, 81–106

5 Pearcy, R.W. and Ehleringer, J.R. (1984) Plant Cell Environ. 7, 1-13

6 Lasaga, A.C., Berner, R.A. and Garrels, R.M. (1985) in The Carbon Cycle and Atmospheric CO₂: Natural Variations Archean to Present ISundquist, E.T. and Broecker, W.S., eds), pp. 397–411, American Geophysical Union

7 Andrews, T.J. and Lorimer, G.H. (1987) in *Photosynthesis* (*Biochemistry of Plants*, Vol. 10) (Hatch, M.D. and Boardman, N.K., eds), pp. 131–218, Academic Press

8 Jordan, D.B. and Ogren, W.L. 11984) *Planta* 161, 308–313

9 Ku, M.S.B. and Edwards, G.E. (1977) *Plant Physiol.* 59, 986–990

10 Brooks, A. and Farquhar, G.D. (1985) Planta 165, 397-406

Planta 105, 397–400 11 Sharkey, T.D. (1988) *Physiol. Plant.* 73,

147-152 12 Keeley, J.E. (1990) Trends Ecol. Evol. 5,

330–333 13 Sage, R.F., Pearcy, R.W. and Seemann, J.R.

(1987) Plant Physiol. 85, 355–359 14 Woodward, F.I. (1990) Trends Ecol. Evol.

5, 308-311 15 Ehleringer, J.R. and Björkman. O. (1977)

Plant Physiol. 59, 86-90 16 Carter, D.R. and Peterson, K.M. (1983)

Oecologia 58, 188–193
17. Bazzaz, F.A. and Carlson, R.W. (1984)

17 Bazzaz, F.A. and Carlson, R.W. (1984) Oecologia 62, 196–198

18 Patterson, D.T. and Flint, E.P. (1990) in Impact of Carbon Dioxide, Trace Gases, and Climate Change on Global Agriculture (Kimball, B.A., Rosenburg, N.J. and Allen, L.H., Jr, eds), pp. 83–110, American Society

of Agronomy Special Publication 53
19 Hattersley, P.W. (1987) in Grass
Systematics and Evolution (Soderstrom.

M.A. (1971) Carnegie Inst. Wash. Yearb. 69, 640–648
21 Boynton, I.E., Nobs, M.A., Björkman, O. and Pearcy, R.W. (1971) Carnegie Inst. Wash. Yearb. 69, 629–632

20 Björkman, O., Pearcy, R.W. and Nobs.

T.R., Hilu, K.W., Campbell, C.S. and

Barkworth, M.E., eds), pp. 49-69,

Smithsonian Institution Press

76ard. 69, 629–632 22 Powell, A.M. (1978) Ann. Mo. Bot. Gard. 65, 590–636

23 Monson, R.K. (1989) Adv. Ecol. Res. 19, 57–110

24 Ueno, O., Samejima, M., Muto, S. and Miyachi, S. (1988) *Proc. Natl Acad. Sci.* 85, 6733–6737

25 Downton, W.J.S. (1975) *Photosynthetica* 9. 96–105

26 Ragavendra, A.A. and Das, V.S.R. (1978) Photosynthetica 12, 200–208

27 Smith, B.N. (1986) *BioSystems* 8, 24–3228 Budyko, M.I., Ronov, A.B. and Yanshin.

Y.L. (1987) History of the Earth's Atmosphere, Springer-Verlag

29 Gammon, R.H., Sundquist, E.T. and Fraser, P.J. (1985) in Atmospheric Carbon Dioxide and the Global Carbon Cycle (Trabalka, J.R., ed.I., pp. 27–62. US Department of Energy

30 Berner, R.A. (1990) *Science* 249, 1382–1386

31 Cerling, T.E. (1989) *Nature* 339, 695–696 32 Crowley, T.I., Hyde, W.G. and Short, D.A. (1989) *Geology* 17, 457–460

33 Edwards, G.E. and Ku, M.S.B. (1987) in *Photosynthesis* (*Biochemistry of Plants*, Vol. 10) (Hatch, M.D. and Boardman, N.K., eds), pp. 275–325, Academic Press

34 Monson, R.K. (1989) *Oecologia* 80. 215–221

35 Hylton, C.M., Rawsthorne, S., Smith, A.M., Jones, D.A. and Woolhouse, H.W. 11988) Planta 175, 452–459

36 Brown, W.V. and Smith, B.N. (1972) Nature 239, 345–346

37 Thomasson, J.R., Nelson, M.E. and Zakrzewski, R.J. (1986) *Science* 233, 876–878 38 Quade, J., Cerling, T.E. and Bowman, J.R. (1989) *Nature* 342, 163–165

39 Cerling, T.E., Ouade, J., Wang, Y. and Bowman, J.R. (1989) *Nature* 341, 138–139 40 Farquhar, G.D., Ehleringer, J.R. and

Hubick, K.T. (1989) Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537

41 Thomas, B.A. and Spicer, R.A. (1987) The Evolution and Paleobiology of Land Plants, Croom Helm Publishers

42 Stebbins, G.L. (1974) Flowering Plants Evolution Above the Species Level, Belknap Press

43 Moore, P.D. (1982) Nature 295, 647–648 References added in proof:

44 Moore, P.D. (1989) J. Geol. Soc. 146, 183–186

45 Raven, J.A. and Sprent, J.I. 119891 J. Geol. Soc. 146, 161–170