光、温度、水蒸汽压亏缺及二氧化碳对番木瓜（Carica papaya）光合作用的影响

林植芳 詹姆士·阿勒林格
（中国科学院华南植物研究所）（美国犹他大学生物系）

提 要

三个番木瓜栽培种“岭南”、“2×0.7”和“4×2”的净光合率随入射光强度增高而增大。光合作用光饱和出现在0.7～0.8 μmol m⁻² s⁻¹。量子产额（mol CO₂/mmol 吸收量子）为0.042～0.048，接近于已测定过的 C₄ 植物。气孔对 CO₂的传导率和蒸腾作用亦随入射光强度增高而增大。细胞间 CO₂ 密度在叶温 25°C 时为 260μl·L⁻¹，在远于光补偿点时为最大。蒸腾作用和净 CO₂ 通化率随入射光量子流使而增大。

三个栽培品种木瓜的光合作用最适温度为 25°C。蒸腾作用及气孔对 CO₂及水分丧失的传导率以 35°C 为最大。光合作用的补偿点为 50μl·L⁻¹，接近于多数 C₃ 植物。气孔对细胞间 CO₂ 浓度变化的反应敏感。

水蒸汽压亏缺（VPD）从 6 毫巴增至 26 毫巴时，“4×2”和“岭南” 的净光合作用降低 32～33%，“2×0.7”则降低 19%。当 VPD 在 19 毫巴时，蒸腾作用最大。VPD 增大则降低水分利用效率。结果亦表明气孔传导率对限制木瓜叶光合作用的意义。 引 言

番木瓜（Carica papaya）是一种高产的热带水果。在美国的夏威夷、佛罗里达等州及其他地方，人们种植木瓜以收获果实及花蜜。番木瓜也是一种南方常见的水果。番木瓜原产热带美洲，目前广泛分布于热带和亚热带地区。美国夏威夷州的木瓜年单位面积产量大至 3500 斤/亩。中国广东省的木瓜年单位面积产量平均约为 7000 斤/亩。

木瓜的木瓜已有很长的历史，然而对番木瓜生理学的研究几乎空白。只有一篇文章涉及受花叶病影响的叶片的光合作用（Decker 和 Tio 1958）。因此，了解关于番木瓜的基本生理特性甚为必要。这将有助于人们认识那些限制其生长、产量及分布的因素，从中探究丰产的途径。我们的兴趣在于对番木瓜完整叶片光合作用的研究，其目的是分析外部及内部因素对番木瓜叶片光合作用的影响，包括环境条件的影响、叶片个体发育中的光合作用特性的变化以及发育期不同的叶片光谱特征等。本文报道了关于光强度、温度、水蒸汽压亏缺以及二氧化碳浓度对番木瓜叶片的光合作用、蒸腾作用以及气孔对 CO₂ 转移的传导率的影响。

* 本工作在美国犹他大学生物系完成。承徐俊彦、孙谷明两位同志协助整理，特此致谢。
材料与方法

生长条件 本试验采用三个香木瓜栽培品种，即岭南、2×0.7及4×2。种子采自广州市河南园艺场，栽培在无其他大学生物的温室。植株种植在装有标准盐酸土填混合物的塑料盆中（25×29cm）。每周施两次营养液。温室的湿度是30℃（白天）/18℃（晚上）。叶温接近气温。光照为13/11小时，中午的光辐射为1.2 m mol·m⁻²·s⁻¹。来源由钠及金属卤化物的1000 W HID灯加上天然光照混合而成。相对湿度为20~60%。叶片的微气孔条是用CR-1 micrologger测量的。

CO₂交换的测定 CO₂交换（光合作用）及蒸腾作用是用开放式气体循环交换系统同时测定的（Ehleringer 与 Bjorkman, 1977）。叶室（内部体积1.2 升）有水夹套，叶室的铝板涂有铝，其中有四个高速的小风扇（Minronel, Hudson, Mass）保持高的边界层传导性。

被测的叶片是植株顶部的第三或第四片。将单个连体叶片的一部分（36~50cm²）密封在叶室中，通入叶室的空气流量为39升/分。将通过叶室之前和之后的一部分空气泵入相对湿度测器（model HMP 14V, Weathermeasure crop, Sacramento, Calif.）及红外线 CO₂分析仪（model Mark 11, Analytical Development Corp., Hoddesdon, England）中分别测定水蒸汽含量及 CO₂浓度的变化。两个连接到叶片下表面的热电偶用于测量叶片温度。

水蒸汽反应曲线通常从25℃开始，得到稳定的光合作用后，随后以5℃隔降温至15℃。当温度回升到25℃并得到了与第一点相似的数据后，继续以5℃间隔升至40~45℃。测定时光强度为1.5 m mol·m⁻²·s⁻¹（400~700nm），VPD=10 毫巴。外界 CO₂浓度为33pa±0.5=(330±5μl·L⁻¹)

光合作用的反应曲线由高光强开始做起，叶片先曝露在约20m m mol·m⁻²·s⁻¹（400~700nm）下，待得到稳定的光合率后，在光源和叶室之间加入无色金属网以逐步降低光强度。

通常，光合作用和蒸腾作用是在叶温25℃,330μmol·L⁻¹ CO₂及 VPD 为10 毫巴下测定的。净光合率（Pn）由进入和流出叶室气体内 CO₂浓度差计算而得。蒸腾作用（Tᵣ）由进入气流中（VP₃）和出来气流中（VP₄）的水蒸汽含量计算；

\[
P_n = \frac{ΔCO₂}{F} \frac{L}{K_p}
\]

\[
T_r = \frac{VP₄ - VP₃}{F} \frac{L}{K_r}
\]

这里，F 是空气流量；L 是叶面积；Kₚ 是从 μmol·m⁻³ 转换为 μmol·m⁻³ 的常数，Kₗ 是每个 mmol 的气体体积。细胞内部空间的 CO₂浓度（Ci）为

\[
C_i = C_a - P_n / C_{CO₂}
\]

VPD 是外界 CO₂浓度，C_{CO₂} 是叶片对 CO₂的传导率。

水蒸汽压亏缺（VPD）是

\[
VPD = VP₃ - VP₄
\]

VP₃ 及 VP₄ 是叶片的饱和蒸汽压（在叶温下）及从叶室出来气流的蒸汽压。

叶片对水分丧失的传导率（C_{H₂O}) 按下面公式计算

\[
C_{H₂O} = \frac{VP₄ - VP₃}{VPD} \frac{F}{L}
\]

气孔对 CO₂扩散的传导率是

\[
C_{CO₂} = C_{H₂O} / 1.56
\]

水分利用效率以蒸腾水分的毫克数及同化 CO₂毫克数的比例表示。
結果和討論

一、光合作用和蒸騰作用對光強的反應

光是影響光合作用的最重要的因子。在自然條件下，淨光合成率通常為直射到葉片上的太陽輻射所限制。儘管雙一系的植物研究過光和光合作用之間的基本關係。但由於光飽和輻射、光補償點及暗呼吸率的變化，這種光—光合作用關係的絕對效率仍然有着多樣性。

圖1說明番木瓜的淨光合作用（Pn）對入射量子通量變化的反應。淨光合成率隨入射光強度增高而增大，最後達到最大值。兩個栽培種“岭南”及“2×0.7”的有效光合作用飽和點（95%的最大值）出現在0.8 m mol m⁻²s⁻¹處。光合作用曲線在低光強度下（0至0.4 m mol m⁻²s⁻¹）急劇上升。此後，曲線變得平緩。生長在高光強度（2.3 m mol m⁻²s⁻¹）的“岭南”植株，其光葉的淨光合率及光飽和水平都比生長在1.6 m mol m⁻²s⁻¹者為高。

葉溫也影響光合作用—光反應曲線。在入射光強度為0.5 m mol m⁻²s⁻¹時，葉溫從25°C 增至30°C，光合率並無顯著的差異。在高光強下，25°C 葉溫的.net光合率最高。在更高溫下則同時增大了暗呼吸率。

光合作用—光吸收作用曲線最初部分的斜率稱為量子產額。它是光合作用中光能轉化的最大效率的一種度量。從圖2可看出三個栽培品種的量子產額（mol CO₂/mol 吸收量子）為0.042至0.048。這個數值與C₃ 植物的測定值相近似（Ehleringer 和 Björkman 1977）。

![圖1 香番木瓜的淨光合率—光反應曲線](image1)

Fig. 1 Net photosynthesis as a function of incident quantum flux for papaya leaves.

![圖2 三個番木瓜栽培品種的光合作用量子產額](image2)

Fig. 2 The quantum yield of three cultivars of papaya.
气孔对 CO₂扩散的传导率及蒸腾作用随光强度增高而增大（图 3）。两条曲线的形状很相似。气孔的传导率及蒸腾作用之间有着密切的线性关系，相关系数为 0.983。此一实验结果与上述公式相符。在光饱和区内没有发现净光合作用、蒸腾作用或气孔传导率之间有任何正相关性。

低辐射强度下细胞间 CO₂浓度变化最快。在光补偿点或低于光补偿点时，叶片细胞间 CO₂浓度最大。光强高于光补偿点时，细胞间 CO₂浓度显著降低并或多或少地保持恒定。

蒸腾失水对净 CO₂吸收的比率(T/P)随入射的量子通量增高而增大。这是由于光强增高时光合作用的增加较气孔传导率的增加要慢的缘故（图 4）。气孔对叶片和大气之间的水蒸气及 CO₂转移的调节受一系列因子的影响。一般来说，光辐射可能是控制气孔开放的最重要的因子（Zelitch 1971）。图 3 清楚地表明气孔传导率随辐射强度增加而增大。由于蒸腾效率与叶片的传导率成比例，故这两者随辐射增强而发生的变化是平行的。当辐射增强时，细胞间 CO₂浓度或多或少地保持恒定，这表明气孔开张的大小和生化暗反应两者是紧密相关的。

二、温度对光合作用的影响

光合作用的最适温度随植物种类及生长
环境的温度而异 (Berry 和 Björkman 1980)。通常，光合作用的最适温度为 25～30°C (C₃植物) 和 35～40°C (C₄植物)。在我们的实验中，三个番木瓜栽培品种的最适温度为 25°C (图 5)。叶温 25°C 及 30°C 之间净光合率的差异依季节不同而改变。“岭南”木瓜在七月份时，叶温由 25°C 增高至 30°C 时，净光合率降低 12%，但在八月末，却只降低 1%。

光合作用——温度曲线呈抛物线状。它有两个不同的区域。25°C 和 30°C 间出现一个相对的高，接着明显地降低。

随着温度的变化，蒸腾作用及气孔对 CO₂ 及水分丧失的传导率表现相似的变化趋势 (图 6)。温度从 20°C 增至 30°C，蒸腾作用及气孔对 CO₂ 及水分丧失的传导率皆略有增大。当温度升至 35°C 时，这三个参数达到最大值。高于 40°C，这三个参数都有降低。这说明随着温度从 20°C 增至 35°C，气孔逐步开启。我们所得的结果与其他研究者在莱豆、玉米、小麦、大豆所得的结果相符合 (Zelitch 1971)。40°C 时气孔的关闭不是由于干旱，因为实验的叶片水蒸气压亏缺都保持在 10 毫巴左右。在大田条件下，气孔在较高温度下关闭则可能是由于增大水分亏缺以及受热叶片的干燥而引起的。
高温影响酶的稳定性及光系统的完整性，因此引起曲线的降低及光合效率的不稳定。Wong等(1979)表明叶温对气孔的传导率及光合率之间关系的影响因光强度而不同。辐射高时，细胞间CO₂浓度在高于或低于光合作用最适温度时为最低。蒸腾作用对光合作用的比率以一个相似于细胞间CO₂浓度的图式随温度而改变。

三、细胞间CO₂浓度对光合作用和蒸腾作用的影响

C₃植物的光合作用在大气的CO₂浓度下并未饱和。因此，CO₂是植物光合生产率的一个重要的限制因子（Björkman 1973）。CO₂从大气向叶绿体中羧化部位移动的阻力包括两个方面；以气相状态从叶片外面进入细胞间隙，以及以液相状态从细胞间隙进入叶绿体（Gaastra 1959, Nobel 等1977）。细胞间隙二氧化碳浓度受外界二氧化碳浓度的影响，并受气孔传导率所调控。在正常的CO₂浓度下，C₃和C₄植物的细胞间CO₂浓度不相同。Wong等（1979）指出八种C₃植物的细胞间CO₂浓度为220μl·l⁻¹，而在四种C₄植物中则约为100μl·l⁻¹。Goudriaan等（1978）指出玉米（C₄植物）中细胞间CO₂浓度稳定在120μl·l⁻¹左右。菜豆的细胞间CO₂浓度为210μl·l⁻¹。在我们的实验中，木瓜的细胞间CO₂浓度是260μl·l⁻¹（叶温25°C，外界CO₂浓度330μl·l⁻¹）。

图 7 叶片周围 CO₂浓度及细胞间 CO₂浓度的关系
Fig. 7 The relationship between ambient and intercellular CO₂ concentrations.

图 8 番木瓜叶片（岭南栽培品种）的净光合率、蒸腾作用和气孔传导率与细胞间 CO₂浓度的关系
Fig. 8 Intercellular CO₂ concentration dependence of net photosynthesis, transpiration and stomatal conductance in papaya South China.

图7看出外界CO₂浓度和细胞间CO₂浓度之间存在线性关系，相关系数(r²)为0.996。光合作用与细胞间CO₂浓度之间密切相关（图8）。当细胞间CO₂浓度低于26Pa(260μl·l⁻¹, Ca相应为33Pa)时，CO₂决定的净光合作用曲线呈线性。细胞间CO₂浓度高于50Pa时，曲线出现拐点。

图8的CO₂曲线可用于测定CO₂补偿点(T)。若把曲线外推至与横坐标交点，可
得 CO₂ 补偿点，它的数值为 5 Pa（50 μmol·L⁻¹），相似于 C₃ 植物的典型数值。

当 CO₂ 浓度增高时，蒸腾作用和气孔传导率显著降低。在早期的研究中，Meidner 和 Mensfield (1965) 得出近保卫细胞的细胞间 CO₂ 浓度调节气孔传导率的结论。净光合作用增高和蒸腾作用的降低引起 P/T 比率的增大（图 9）。可使 CO₂ 浓度增高不仅可提高番木瓜的光合效率，还能增大水分的利用效率。根据 Raschke (1975) 的意见，气孔对 CO₂ 浓度的变化有两种不同的反应形式。有些种类的气孔对 CO₂ 浓度变化反应敏感，另一些则仅有微弱的反应。番木瓜看来属于前一种类型，它的气孔对细胞间 CO₂ 浓度的增高反应敏感。

四、水蒸汽压亏缺对光合作用的影响

图 10 指出增大 VPD 时光合作用及气孔传导率的变化。在三个栽培品种中，VPD 的增大使光合作用及气孔传导率降低。当 VPD 从 6 毫巴增至 26 毫巴时，栽培种 "4 × 2" 和 "岭南" 的净光合作用降低 82～33%，栽培种 "2 × 0.7" 则降低 19%。气孔对 CO₂ 传导率的降低更为显著（56～66%），同时引起细胞间 CO₂ 浓度相应的降低（图 11）。

蒸腾作用率及水蒸汽传导率随 VPD 的增大而明显地改变（图 11）。随着 VPD 增大，蒸腾作用率增加。VPD 为 19 毫巴时，蒸腾作用达至最大，随后则降低。这种反应相似于 Farquhar 等（1980）讨论的负反馈反应方式。

水分利用效率随 VPD 增大而线性降低（图 11）。当 VPD 从 10 毫巴增至 26 毫巴时，叶片同化等量的 CO₂ 要多消耗 70% 的水分。VPD 高时，气孔的关闭可能是植物防止更多水分丧失的适应性调节。然而蒸腾作用引起水分丧失的减少，同时造成净光合作用的降低。

图 9 细胞间 CO₂ 浓度对 T/P 的影响

图 10 净光合率、气孔传导率和水蒸汽压亏缺的关系

Fig. 9 Effect of intercellular CO₂ concentration on ratio T/P.

Fig. 10 Water vapor pressure deficit dependence on photosynthesis and stomatal conductance.
图11 VPD对番茄瓜叶片蒸腾作用、气孔传导率、细胞间CO₂浓度及水分利用效率的影响

Fig. 11 Effect of VPD on transpiration, stomatal conductance, intercellular CO₂ concentration and T/P ratio.

结 论

番茄瓜的光合效率强烈地受光强、叶温、CO₂浓度及水蒸汽压亏缺的影响。随着入射光强的增高，光合效率增大。当入射光辐照度至 0.7〜0.8 m mol m⁻²·s⁻¹时，出现光合作用光饱和现象。在光饱和情况下，只能通过提高外界CO₂浓度使光合效率增益。因为此时光合效率受叶绿体碳化部位的CO₂利用率的限制。高光强下温度对光合作用的影响有一个起伏。当温度低于光合作用最适温度时，由于酶活性的限制而降低光合效率。温度高于最适温度则由于暗呼吸及光呼吸增大，以及降低光反应成份的热稳定性使光合效率降低(Berry和Björkman 1980)。

气孔张开的大小调节着CO₂进入叶片的速度，因此测定气孔对水蒸汽及CO₂扩散的传导率将有助于对光合作用过程更进一步的了解。气孔张开的大小和光合反应对CO₂需要是相互协调的。因而气孔传导率的改变使细胞间CO₂浓度保持在一个稳定的水平。许多研究者(Wong等, 1979; Goudriaan和Van Laar, 1978) 曾经观察过这种现象并提出过有关气孔及叶绿体内部光合活力之间相互协调的动力学的概念。

气孔张开使得CO₂扩散进入叶舌的同时，不可避免会引起蒸腾的水分丧失。光合作用效率或VPD(蒸腾作用的驱动力)增高而引起气孔传导率的改变，使得蒸腾的水分丧失减少。这不仅改变了蒸腾作用的绝对效率，而且实际上改变了水分利用效率。因而测定光合作用的同时测定蒸腾作用，这对于了解光合效率的改变是很有意义的。测定蒸腾作用则可能测定气孔的传导率、细胞间CO₂浓度以及水分利用效率等与光合作用密切相关的几个重要的因子。虽然我们不能直接测定气孔对CO₂的传导率，但可以从测定气孔对水蒸汽传导率间接推算出来。本试验亦证实了气孔传导率在番茄瓜叶片光合作用限制因子中的重要性。

